Система жидкостного охлаждения


О системе водяного (жидкостного) охлаждения

Система жидкостного охлаждения – это такая система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.Вода в чистом виде редко используется в качестве теплоносителя (связано это с электропроводностью и коррозионной активностью воды), чаще это дистиллированная вода (с различными добавками антикоррозийного характера), иногда — масло, другие специальные жидкости.

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жидкость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.Принцип действия системы жидкостного охлаждения отдаленно напоминает систему охлаждения в двигателях автомобиля — через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагревается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

Типичная система состоит из водоблока, в котором происходит передача тепла от процессора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зеркального отражения, по уже озвученным мною причинам. Через знакомый термоинтерфейс водоблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отличий от принципа действия процессорных водоблоков нет – все различия в креплении и форме радиатора.Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев околопроцессорно-сокетных элементов материнской платы, которые могут греться ни чуть не хуже своего старшего брата. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха. Как этого избежать? Совет, пожалуй, один – выбирайте системы (совмещайте) с дополнительным кулером, который будет охлаждать остальные греющиеся силовые элементы.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи (например, с задней стороны системника). Второй вариант, пожалуй, предпочтительнее. Судите сами: больше свободного места внутри системного блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.

Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и прекрасно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выделиться на фоне других. Поэтому существует огромный выбор внешних систем жидкостного охлаждения (понятное дело, что без соединительных трубок с радиатором на конце никак не пренебречь). Их не стыдно выставить напоказ; обычно внутри таких систем скрывается сразу все – помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстративно дорого.

Итог по системам водяного охлажденияДля чего же применять жидкостные системы охлаждения? Ведь если посудить строго, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК (если бы это было не так, то их бы не ставили, а ставили системы жидкостного охлаждения). Поэтому чаще всего такую систему следует рассматривать с позиции разгона – тогда, когда возможностей воздушной системы охлаждения будет не хватать. Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.Ну и еще один плюс такой системы – ее беззвучность. Чаще всего помпы заставляют циркулировать поток воды по системе, не создавая шума больше значения в 25 дБ.Минус, как я уже отметил – зачастую, дороговизна установки.

Источник:geektimes.ru

Моддинг компьютера Водяное охлаждение Своими руками Длиннопост

pikabu.ru

Система охлаждения двигателя — DRIVE2

Назначение и классификация систем охлажденияТемпература газов в цилиндрах работающего двигателя достигает 1800-2000 градусов. Только часть выделенного при этом тепла преобразуется в полезную работу. Оставшаяся часть отводится в окружающую среду системой охлаждения, системой смазки и наружными поверхностями двигателя.Чрезмерное повышение температуры двигателя приводит к выгоранию смазки, нарушению нормальных зазоров между его деталями следствием чего является резкое возрастание их износа. Возникает опасность заедания и заклинивания. Перегрев двигателя вызывает уменьшение коэффициента наполнения цилиндров, а в бензиновых двигателях еще и детонационное сгорание рабочей смеси.Большое снижение температуры работающего двигателя также нежелательно. В переохлажденном двигателе мощность снижается из-за потерь тепла; вязкость смазки увеличивается, что повышает трение; часть горючей смеси конденсируется, смывая смазку со стенок цилиндра, повышая тем самым износ деталей. В результате образования серных и сернистых соединений стенки цилиндров подвергаются коррозии.

Система охлаждения предназначена для поддержания наивыгоднейшего теплового режима. Системы охлаждения подразделяются на воздушные и жидкостные. Воздушные в настоящее время на автомобилях встречаются крайне редко. Системы жидкостного охлаждения могут быть открытыми и закрытыми. Открытые системы – системы, сообщающиеся с окружающей средой через пароотводную трубку. Закрытые системы разобщены от окружающей среды, а поэтому давление охлаждающей жидкости в них выше. Как известно, чем выше давление, тем выше температура закипания жидкости. Поэтому закрытые системы допускают нагрев ОЖ до более высоких температур (до 110-120 градусов).

По способу циркуляции жидкости системы охлаждения могут быть:— принудительными, в которых циркуляция обеспечивается насосом, расположенным на двигателе;— термосифонными, в которых циркуляция жидкости происходит за счет разницы плотности жидкости, нагретой деталями двигателя и охлажденной в радиаторе. Во время работы двигателя жидкость в рубашке охлаждения нагревается и поднимается в верхнюю ее часть, откуда через патрубок поступает в верхний бачок радиатора. В радиаторе жидкость отдает теплоту воздуху, плотность ее повышается, она опускается вниз и через нижний бачок вновь возвращается в систему охлаждения.

— комбинированными, в которых наиболее нагретые детали (головки блоков цилиндров) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Устройство системы охлаждения

Наибольшее распространение в автомобильных ДВС получили закрытые жидкостные системы с принудительной циркуляцией охлаждающей жидкости (ОЖ).

Закрытая система охлаждения с принудительной циркуляцией ОЖ

В состав таких систем входят: рубашка охлаждения блока и головки цилиндров, радиатор, насос ОЖ, вентилятор, термостат, патрубки, шланги, расширительный бачок. В систему охлаждения также включается радиатор отопителя.ОЖ, находящаяся в рубашке охлаждения, нагреваясь за счет тепла, выделяемого в цилиндре двигателя, поступает в радиатор, охлаждается в нем и возвращается в рубашку охлаждения. Принудительная циркуляция жидкости в системе обеспечивается насосом, а усиленное охлаждение ее — за счет интенсивного обдува воздухом радиатора. Степень охлаждения регулируется при помощи термостата и путем автоматического включения или выключения вентилятора. Жидкость в систему охлаждения заливают через горловину радиатора или расширительный бачок. Емкость системы охлаждения легкового автомобиля, в зависимости от объема двигателя – от 6 до 12 литров. Сливают ОЖ через пробки, расположенные обычно в блоке цилиндров и нижнем бачке радиатора.

Радиатор отдает воздуху тепло от ОЖ.

Устройство радиатора

Он состоит из сердцевины, верхнего и нижнего бачков и деталей крепления. Для изготовления радиаторов используются медь, алюминий и сплавы на их основе. В зависимости от конструкции сердцевины радиаторы бывают трубчатые, пластинчатые и сотовые.

Виды сердцевин радиаторов

Наибольшее распространение получили трубчатые радиаторы. Сердцевина таких радиаторов состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему бачкам радиатора. Наличие пластин улучшает теплоотдачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее круглых, так как поверхность охлаждения их больше; кроме того, в случае замерзания ОЖ в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.В пластинчатых радиаторах сердцевина устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются реже.В сердцевине сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи ОЖ. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника. Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения.В верхний бачок впаяны заливная горловина, закрываемая пробкой, и патрубок для подсоединения гибкого шланга, подводящего ОЖ к радиатору.

Устройство пробки радиатора

Сбоку наливная горловина имеет отверстие для пароотводной трубки. В нижний бачок впаян патрубок отводящего гибкого шланга. Шланги прикреплены к патрубкам стяжными хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора. Горловину герметически закрывает пробка, изолирующая систему охлаждения от окружающей среды. Она состоит из корпуса, парового (выпускного) клапана, воздушного (впускного) клапана и запорной пружины. В случае закипания жидкости в системе охлаждения давление пара в радиаторе возрастает. При превышении определенного значения открывается паровой клапан и пар выходит через пароотводную трубку. После остановки двигателя жидкость охлаждается, пар конденсируется и в системе охлаждения создается разрежение. При этом возникает опасность сдавливания трубок радиатора. Для предотвращения этого явления служит воздушный клапан, который, открываясь, пропускает внутрь радиатора воздух.

Для компенсации изменения объема охлаждающей жидкости вследствие изменения температуры в системе устанавливается расширительный бачок.

Расширительный бачок

В некоторых радиаторах нет заливной горловины, и заполнение системы охлаждающей жидкостью осуществляется через расширительный бачок. В этом случае паровой и воздушный клапаны располагаются в его пробке. Метки, наносимые на расширительном бачке, позволяют контролировать уровень ОЖ в системе охлаждения. Проверка уровня проводится на холодном двигателе.

Насос ОЖ

Насос ОЖ

Устройство насоса ОЖ

обеспечивает ее принудительную циркуляцию в системе охлаждения. Насос центробежного типа устанавливается в передней части блока цилиндров и состоит из корпуса, вала с крыльчаткой и сальника. Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. Привод насоса осуществляется ремнем от шкива коленвала двигателя. Под действием центробежной силы, возникающей при вращении крыльчатки, ОЖ из нижнего бачка радиатора поступает к центру корпуса насоса и отбрасывается к его наружным стенкам. Из отверстия в стенке корпуса насоса ОЖ попадает в отверстие рубашки охлаждения блока цилиндров. Вытеканию ОЖ между корпусом насоса и блоком препятствует прокладка, а в месте выхода вала — сальник.

Для усиления потока воздуха, проходящего через сердцевину радиатора, установлен вентилятор. Его монтируют либо на одном валу с насосом ОЖ, либо отдельно. Он состоит из крыльчатки с лопастями, привернутой к ступице. Для улучшения обдува воздухом двигателя и радиатора на последнем может быть установлен направляющих кожух. Привод вентилятора может осуществляться несколькими способами. Самый простой – механический, когда вентилятор жестко закрепляется на одной оси с насосом ОЖ. В этом случае вентилятор постоянно включен, что приводит к излишнему расходу мощности двигателя. Кроме того, вентилятор работает даже в неоптимальных режимах, например, сразу после запуска двигателя. Поэтому в современных двигателях такое подключение не используется, а вентилятор соединяется с приводом через муфту. Конструкция муфты может быть различной – электромагнитная, фрикционная, гидравлическая, вязкостная (вискомуфта), но все они обеспечивают автоматическое включение вентилятора при достижении определенной температуры ОЖ. Такое включение обеспечивает температурный датчик. Причем использование гидромуфты и вискомуфты делает возможным не только автоматическое включение и выключение вентилятора, но и плавное изменение частоты его вращения в зависимости от температуры.

Вентилятор может приводиться не от коленвала двигателя, а отдельным электродвигателем. Такое подключение используется наиболее часто, так как позволяет довольно просто осуществлять автоматическое регулирование моментов включения и выключения с помощью термисторного датчика (его электрическое сопротивление изменяется в зависимости от нагрева). Если же работой системы охлаждения управляет контроллер двигателя, то появляется возможность изменения и частоты вращения. Кроме того, вентилятор «реагирует» и на режимы движения. Например, он включается на холостом ходу при езде в пробках для предотвращения перегрева и выключается при загородной езде на высокой скорости, когда естественного обдува радиатора вполне достаточно для его охлаждения.

В период пуска двигателя для уменьшения износа необходимо быстрее прогреть его до рабочей температуры и при дальнейшей эксплуатации поддерживать эту температуру. Для ускорения прогрева двигателя и поддержания оптимальной его температуры служит термостат.

Термостат

Термостат устанавливают в рубашке охлаждения головки цилиндров на пути циркуляции жидкости из рубашки в верхний бачок радиатора. В системах охлаждения используются термостаты с жидкостным и с твердым наполнитетелем.Термостат с жидкостным наполнителем состоит из корпуса, гофрированного латунного цилиндра, штока и двойного клапана. Внутри гофрированного латунного цилиндра налита жидкость, температура кипения которой 70-75 градусов. Когда двигатель не прогрет, клапан термостата закрыт и циркуляция происходит по малому кругу: насос ОЖ — рубашка охлаждения — термостат — насос.Термостат с твердым наполнителем состоит из корпуса, внутри которого помещен медный баллон, заполняемый массой, состоящей из медного порошка, смешанного с церезином. Баллон сверху закрыт крышкой. Между баллоном и крышкой расположена диафрагма, сверху которой установлен шток, воздействующий на клапан. В непрогретом двигателе масса в баллоне находится в твердом состоянии, и клапан термостата закрыт под действием пружины. При прогреве двигателя масса в баллоне начинает плавиться, объем ее увеличивается и она давит на диафрагму и шток, открывая клапан.

Малый и большой круг охлаждения

Работа термостата

Контроль температуры ОЖ осуществляется по указателю температуры и при помощи сигнальной лампы перегрева двигателя на щитке приборов. Управление сигнальной лампой и указателем осуществляют датчики, ввернутые в верхний бачок радиатора и в рубашку охлаждения головки цилиндров.

Датчики системы охлаждения

В качестве теплоносителя может применяться вода (в устаревших конструкциях двигателей) или антифриз. Качество ОЖ, применяемой для системы охлаждения двигателя, имеет не меньшее значение для долговечности и надежности его работы, чем качество топлива и смазочных материалов.

Антифризы — охлаждающие жидкости для системы охлаждения автомобиля, не замерзающие при отрицательной температуре. Даже если температура внешней среды будет ниже минимальной рабочей температуры антифриза, он превратится не в лед, а в рыхлую массу. При дальнейшем понижении температуры эта масса затвердеет, не увеличившись в объеме и не повредив при этом двигатель. Основа антифризов — водный раствор этиленгликоля или пропиленгликоля. Пропиленгликолевая основа применяется реже. Ее главное отличие – безвредность для человека и окружающей среды, но и более высокая цена при тех же потребительских качествах. Этиленгликоль агрессивен к материалам двигателя, поэтому в него добавляют присадки. Всего их может быть до полутора десятков – противокоррозионных, антивспенивающих, стабилизирующих. Именно комплектом присадок и определяется качество и область применения антифриза. По типу присадок все антифризы делятся на три большие группы: неорганические, органические и гибридные.

Неорганические (или силикатные) – наиболее «древние» жидкости, в которых в качестве ингибиторов коррозии применяются силикаты, фосфаты, бораты, нитриты, амины, нитраты и их комбинации. К этой группе антифризов относится и широко распространенный у нас Тосол (хотя многие ошибочно считают его особым типом ОЖ). Главный их недостаток – малый срок службы из-за быстрого разрушения присадок. Пришедшие в негодность компоненты присадок образуют отложения в системе охлаждения, ухудшая теплообмен. Также возможно образование силикатных гелей (сгустков) в ОЖ.В наиболее современных органических (или карбоксилатных) антифризах используются присадки на основе солей карбоновых кислот. Такие антифризы, во-первых, образуют значительно более тонкую защитную пленку на поверхностях системы охлаждения, а во-вторых, ингибиторы действуют только в местах появления коррозии. Следовательно, присадки расходуются намного медленнее, тем самым существенно повышая срок службы антифриза.Промежуточное положение между органическими и неорганическими антифризами занимают гибридные. Их пакет присадок в основном включает соли карбоновых кислот, но и небольшую долю силикатов или фосфатов.Антифризы выпускаются либо в виде концентратов, либо в виде готовых к применению жидкостей. Концентрат перед применением нужно разбавить дистиллированной водой. Пропорция определяется необходимой минимальной температурой замерзания антифриза. Основа антифризов бесцветна, поэтому производители окрашивают их в разные цвета с помощью красителей. Это делается для облегчения контроля уровня антифриза и предупреждения о токсичности жидкостей. Совпадение цвета не всегда является свидетельством совместимости антифризов.

В современных двигателях система охлаждения двигателя может использоваться для охлаждения отработавших газов в системе их рециркуляции (EGR), охлаждения масла в автоматической коробке передач, охлаждения турбокомпрессора. Некоторые двигатели с непосредственным впрыском топлива и турбонаддувом имеют двухконтурную систему охлаждения. Один контур предназначен для охлаждения головки блока цилиндров, другой – блока цилиндров. В контуре, охлаждающем ГБЦ, поддерживается температура на 15-20 градусов ниже. Это позволяет улучшить наполнение камер сгорания и процесс смесеобразования, а также снизить риск возникновения детонации. Циркуляция жидкости в каждом из контуров регулируется отдельным термостатом.

Основные неисправности системы охлаждения

Внешними признаками неисправностей системы охлаждения является перегрев или переохлаждение двигателя. Перегрев двигателя возможен в результате следующих причин: недостаточное количество ОЖ, слабое натяжение или обрыв ремня насоса ОЖ, невключение муфты или электродвигателя вентилятора, заедание термостата в закрытом положении, отложение большого количества накипи, сильное загрязнение наружной поверхности радиатора, неисправность выпускного (парового) клапана пробки радиатора или расширительного бачка, неисправность насоса ОЖ.Заедание термостата в закрытом положении прекращает циркуляцию жидкости через радиатор. В этом случае двигатель перегревается, а радиатор остается холодным. Недостаточное количество ОЖ возможно в случае ее утечки или выкипания. Если уровень ОЖ понизился в результате выкипания – следует долить дистиллированной воды, если жидкость вытекла – доливается антифриз. Открывать пробку радиатора или расширительного бачка можно только когда ОЖ достаточно остынет (10-15 минут после остановки двигателя). В противном случае находящаяся под давлением ОЖ может выплеснуться и причинить ожоги. Вытекание жидкости происходит через неплотности в соединениях патрубков, трещин в радиаторе, расширительном бачке и рубашке охлаждения, при повреждении сальника насоса ОЖ, пробки радиатора или повреждении прокладки головки блока цилиндров. При эксплуатации автомобиля необходимо следить не только за уровнем, но и за состоянием антифриза. Если его цвет становится рыже-бурым, значит, детали системы уже коррозируют. Такой антифриз подлежит немедленной замене.

Переохлаждение двигателя может происходить из-за заедания термостата в открытом положении, а также при отсутствии утеплительных чехлов в зимнее время. Если закрытая система охлаждения негерметична, то повышенное давление в ней не создается и двигатель не прогревается до рабочей температуры. А раз двигатель не прогревается, ЭБУ постоянно обогащает смесь. Таким образом, негерметичная система охлаждения увеличивает расход топлива. Систематическая работа двигателя на обогащенной смеси приводит к разжижению масла, увеличению нагарообразования, быстрому выходу из строя каталитического нейтрализатора.

Выбор антифриза

Если у вас в дороге возникла неисправность, в результате которой уровень охлаждающей жидкости упал ниже допустимого, не расстраивайтесь. Долить можно любой антифриз или воду. Система охлаждения от этого хуже работать не станет. Кстати, не все современные автолюбители знают, что воду нужно заливать мягкую – она не образует накипи. Самая мягкая вода достается нам с неба в виде дождя или снега. А грунтовые воды из родников, колодцев и артезианских скважин категорически не рекомендуются для доливки в систему охлаждения – они образуют очень много накипи. Смягчить воду можно кипячением в течение 20-30 минут с последующим отстаиванием и фильтрованием. Жесткость воды в бытовых условиях легко оценить по пенообразованию при намыливании рук мылом: в мягкой воде пена устойчивая, а в жесткой пена быстро гаснет, и на руках остается сальный осадок. Как только экстренная ситуация, вынудившая вас долить «не ту» жидкость, минует, «коктейль» нужно слить, систему охлаждения промыть и залить «правильный» антифриз.Выбор начинаем с бренда – известный вас не подведет. Далее находим обозначение класса антифриза. Вот здесь чаще всего возникают затруднения. Попробуем прояснить ситуацию. Основой любого антифриза является водный раствор этиленгликоля, который не расширяется при замерзании и не образует твердой сплошной массы. Но этиленгликоль коррозионно агрессивен к металлам. Для защиты деталей системы охлаждения от коррозии применяется три вида присадок: на основе силикатов, на основе солей органических кислот и смешанные (гибридные) добавки к антифризам. Первый рецепт – самый древний. Яркий пример – наш «Тосол», который лукавая реклама иногда позиционирует как антифриз, идеально подходящий для отечественных автомобилей. Выпадение силикатов в осадок приводит к закупориванию тонких трубок радиатора. Поэтому этот вариант покупки даже не рассматриваем. В англоязычном варианте такие антифризы называются: Conventional coolants, IAT (Inorganic Acid Technology) или Тraditional coolants.Гибридные антифризы включают соли карбоновых кислот и небольшое количество силикатов или фосфатов. И хотя этот рецепт тоже свое отживает, но в течение трех лет эксплуатации обеспечивает достаточно приличную защиту от коррозии. Маркируются они: Нybrid coolants, HOAT (Hybrid Organic Acid Technology) или TL 774-C (G-11).Более современные – карбоксилатные антифризы. В их составе отсутствуют неорганические присадки. Срок их службы – не менее 5 лет. Обозначаются надписями или символами: Carboxilate coolants, OAT (Organic Acid Technology, TL 774-F (G12+).Несколько лет назад (в 2008 году) появился еще один вид антифриза, который в английском варианте обозначают Lobrid coolants, SOAT coolants или TL 774-G (G 12++). По составу они аналогичны карбоксилатным, но в них присутствует небольшое количество силикатов. Считается, что такой антифриз можно безболезненно смешивать с любым другим классом охлаждающих жидкостей.Некоторые производители указывают на этикетке состав присадок, что также позволяет идентифицировать тип антифриза. Отсутствие аминов, боратов, нитритов, силикатов и фосфатов говорит о том, что антифриз – карбоксилатный. Гибридные также не должны содержать ничего из этого списка, кроме силикатов, но их количество не должно превышать 500 мг/л.Хорошим признаком, подтверждающим несомненное качество антифриза, является надпись об одобрении автопроизводителей с номерами допусков. Такие допуска выдаются только после длительных испытаний жидкости на автомобилях указанной марки. Правдивость надписи на этикетке можно легко проверить, зайдя на официальный сайт автопроизводителя.А вот заявления типа «Соответствует спецификациям…» или «Отвечает требованиям…» — не более, чем обещания изготовителя антифриза, но не гарантия качества. Особенно это касается маркировок G11, G12+, G12++. Она введена концерном WV только для одобренных им жидкостей. Но так как у нас такие обозначения получили большое распространение, то некоторые производители указывают их на этикетках, не имея на это полного права. То есть, антифриз может оказаться и хорошим, а может и не очень – рулетка. Больше доверия в таких случаях заслуживают известные марки, о чем уже упоминалось выше.Надпись «Совместим со всеми…» лишь подтверждает то, о чем говорилось в начале статьи. Если по каким-то параметрам антифриз не подходит вашему двигателю, то его можно безболезненно использовать только для доливки.Антифриз может продаваться в виде концентрата или уже готовым для заливки. Что выбрать – зависит от климата той местности, где вы проживаете, и вашего желания возиться с машиной. Например, если зимы теплые, к чему заливать 40 – градусный состав? Лучше купить концентрат и разбавить его дистиллированной водой до нужной консистенции (пропорции для разных температур указаны на этикетке).

И последнее – цвет антифриза. Это свойство не играет абсолютно никакой роли. Сама по себе жидкость бесцветна и производитель при желании может раскрасить ее во все цвета радуги. А устойчивое заблуждение, что G11, G12+ или G12++ можно идентифицировать по одному лишь цвету, исходит от непрофессиональных реализаторов.

www.drive2.ru

¡ — Гвайд по системам водяного охлаждения (СВО)

Поскольку системы водяного охлаждения интересны большому количеству мозгочинов, то мы решили написать специальную статью, посвященную системам водяного охлаждения компьютеров. Мы постараемся рассказать обо всех аспектах водяного охлаждения для компьютеров, в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает. Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения, обслуживание системы водяного охлаждения и многие смежные темы.

Что такое система водяного охлаждения

Система водяного охлаждения — это система охлаждения, которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде.

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло, вырабатываемое процессором, передается воде через специальный теплообменник, называемый ватерблоком. Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник — радиатор, в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса, который, чаще всего, называют помпой.

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имеет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг-1·K-1 у воды против 1,005 кДж·кг-1·K-1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024—0,031Вт/(м·K) у воздуха). СВО обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС .

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более продуктивного охлаждения, которое положительно скажется на разгоне, периоде жизни и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения, которая позволит работать разогнанному компьютеру при минимуме шума. По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише, но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X), которые жалуются на высокие температуры работы (более 90 градусов) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения. Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой — холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения, ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему — радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги
  • вода

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) — это специальный теплообменник, с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде. Обычно, конструкция ватерблока состоит из медного основания, а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны .

Высокоэффективный процессорный ватерблок Watercool HeatKiller 3.0 CU

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт, а также ватерблоки на системный чип (северный мост). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип — так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) — так называемые фулкавер (от англ. fullcover) ватерблоки
Популярный gpu-only ватерблок Swiftech MCW60-R Фулкавер ватерблок EK Waterblocks EK-FC-5970

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 – 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими. Также, для увеличения поверхности теплопередачи, в современных ватерблоках обычно применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Универсальный чипсетный ватерблок XSPC X2O Delta Chipset

Радиатор. Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа:

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Пассивный радиатор Alphacool Cape Cora HF 642

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью. При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения — основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину — для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Тройной радиатор Feser X-Changer Triple 120mm Xtreme

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда.

Установка радиатора СВО за компьютерным корпусом

Помпа — это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером — для этого, чаще всего, применяли реле, которое включало помпу автоматически при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы, например Laing DDC, которые обладали компактными размерами и высокой производительностью, при этом питались от стандартных компьютерных 12 вольт.

Мощная и компактная помпа Laing DDC-1T

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления, что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 – 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Шланги или трубки, как бы их не называли , также являются одним из обязательных компонентов любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров) шланги и все будет ОК

Цветной флуоресцентный шланг Feser Tube

Фитинги — это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинги вкручиваться в отверстие с резьбой на компоненте СВО, сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги, необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4, но в редких случаях встречаются также резьбы стандартов G1/8 или G3/8.

Фитинги типа ёлочка от Bitspower Компрессионные фитинги Bitspower

Вода также является обязательным компонентом СВО Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду, то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде — существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками — существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения.

Необязательные компоненты — это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить. Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной и красивой или вызывать у пользователя чувство безопасности эксплуатации СВО. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения, несмотря на то, что большинство систем водяного охлаждения всетаки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Трубчатый резервуар марки Magicool

Cливной кран — это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения. В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания, системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету . Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Электронный датчик потока от AquaCompute

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы, попавшие в систему — это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь — особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Зеленый флуоресцентный краситель

Бэкплейт — это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Фирменный бэкплейт от Watercool

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите — связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов — повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Ватерблок для силовых транзисторов материнской платы от EK Waterblocks

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Помпа, совмещенная с резервуаром от XSPC

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Отличннейший пример самодельных ватерблоков

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату

Внешняя пассивная СВО Zalman Reserator

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

Моддинг проект Overclocked Orange с внутренней СВО

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так — комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Готовая фирменная СВО Swiftech h30-220 Ultima XT

Среди плюсов готовых систем можно отметить удобство — вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой — собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома — при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике . Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК. При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно — выбирать комплектующие по максимальной цене При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа — не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте, при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно скрытых большими воздушными системами охлада.

СВО Thermaltake в пре-мод корпусе

Мы надеемся, что наша статья по водяному охлаждению вам понравилась и позволила разобраться во всех аспектах функционирования СВО.

 (Оригинал)

mozgochiny.ru

Водяное охлаждение для пк - секреты СВО

водяное охлаждение компьютера

Системы водяного охлаждения уже много лет используются как высокоэффективное  средство отвода тепла от нагревающихся компонентов компьютера.

Качество охлаждения напрямую влияет на стабильность работы Вашего компьютера. При избыточном тепле компьютер начинает  зависать и возможен выход из строя перегревшихся компонентов.  Высокие температуры вредны для элементной базы (конденсаторы,  микросхемы и пр.), а перегрев жесткого диска может привести к потере  данных.

С ростом производительности компьютеров приходится использовать более эффективные системы для охлаждения. Традиционной считается воздушная система охлаждения, но воздух обладает  низкой теплопроводностью и при большом потоке воздуха создаётся сильный шум. Мощные кулера издают довольно сильный рёв, хотя при этом могут обеспечить приемлемую  эффективность.

В таких условиях все более популярными становятся водяные системы охлаждения. Превосходство водяного охлаждения над воздушным объясняется показателями теплоемкости (4,183 кДж·кг-1·K-1 для воды и 1,005 кДж·кг-1·K-1 для воздуха) и теплопроводности (0,6 Вт/(м·K) для воды и 0,024—0,031Вт/(м·K) для воздуха).  Поэтому, при прочих равных условиях, системы водяного охлаждения всегда будут эффективнее  воздушных.

В интернете можно найти много материалов по готовым системам водяного охлаждения от ведущих производителей и примеры самодельных систем охлаждения (последние,  как правило, более эффективны).

Система водяного охлаждения (СВО) –  система охлаждения, в которой для переноса тепла используется  вода в качестве теплоносителя. В отличие  от воздушного охлаждения, в котором  тепло передается  напрямую воздуху, в системе  водяного охлаждения тепло  сначала передается  воде.

Принцип работы СВО

Охлаждение компьютера  необходимо для отвода тепла от нагретого компонента (чипсета,  процессора, …)  и его рассеивания. Обычный воздушный кулер снабжен  монолитным радиатором, который  выполняет обе данные функции.

В СВО каждая часть выполняет свою функцию.  Водоблок осуществляет теплосъем, а другая часть рассеивает тепловую энергию. Примерную  схему соединения компонентов СВО можно посмотреть на схеме ниже.

охлаждение компьютера

Водоблоки  могут включаться в контур параллельно  и последовательно. Первый вариант предпочтительнее  при наличии одинаковых теплосъемников.  Можно эти варианты скомбинировать и получить параллельно-последовательное подключение, но  наиболее правильным  будет соединение водоблоков один за другим.

Отвод тепла происходит по такой схеме: жидкость из резервуара подводится к помпе, а затем перекачивается дальше к узлам, которые охлаждают компоненты ПК.

Причиной такого подключения является незначительный прогрев воды после прохождения первого  водоблока и эффективный отвод тепла от чипсета, GPU, CPU. Прогретая жидкость попадает в радиатор и там охлаждается. Затем она снова попадает в резервуар, и  начинается новый  цикл.

По конструктивным особенностям СВО можно разделить на два типа:

  1.  Охлаждающая жидкость циркулирует за счет  помпы в виде отдельного механического узла.
  2. Безпомповые системы, в которых используются специальные хладагенты, проходящие через жидкую и газообразную фазы.

Система охлаждения с помпой

Принцип ее действия эффективность и прост. Жидкость (обычно дистиллированная вода) проходит  через радиаторы охлаждаемых устройств.

Все компоненты конструкции соединяются между собой гибкими трубками (диаметр 6-12 мм). Жидкость,  проходя через радиатор процессора и других устройств, забирает их тепло, а затем по трубкам попадает в радиатор теплообменника, где охлаждается сама. Система замкнутая, и жидкость в ней постоянно циркулирует.

Система замкнутая

Пример такого соединения можно показать на примере продукции фирмы CoolingFlow.  В ней помпа совмещается с буферным резервуаром для жидкости. Стрелки  показывают движение холодной и горячей жидкости.

CoolingFlow

Безпомповое жидкостное охлаждение

Есть системы жидкостного охлаждения, не использующие помпу. В них  используется принцип испарителя и создается направленное давление, вызывающее движение  охлаждающего вещества. В качестве хладагентов применяются  жидкости с низкой точкой кипения. Физику происходящего процесса можно рассмотреть на схеме ниже.

жидкости с низкой точкой кипения

Изначально радиатор и магистрали полностью заполнены жидкостью. Когда температура радиатора процессора становится выше определенного значения, то жидкость превращается в пар. Процесс превращения жидкости в пар поглощает тепловую энергию  и повышает эффективность охлаждения. Горячим паром создается давление. Пар, через специальный односторонний клапан, может выходить только в одну сторону – в радиатор теплообменника-конденсатора. Там пар вытесняет холодную жидкость в направлении радиатора процессора,  и, остывая, превращается снова в жидкость. Так жидкость-пар циркулирует в замкнутой системе трубопровода, пока температура радиатора  высокая. Такая система получается очень компактной.

жидкость-пар циркулирует в замкнутой системе трубопровода

Возможен другой вариант такой системы охлаждения. Например,  для видеокарты.

видеокарта

В радиатор графического чипа встраивается  жидкостный испаритель. Теплообменник располагается  рядом с боковой стенкой видеокарты. Конструкция изготовлена  из медного сплава. Теплообменник охлаждается высокооборотным  (7200 об./мин.) вентилятором  центробежного типа.

Компоненты СВО

В системах водяного охлаждения используется определенный набор компонентов, обязательных и необязательных.

Обязательные компоненты СВО:

  • радиатор,
  • фитинги,
  • ватерблок,
  • помпа,
  • шланги,
  • вода.

Необязательными компонентами СВО являются: термодатчики, резервуар, сливные краны, контролеры помпы и вентиляторов, второстепенные ватерблоки, индикаторы и измерители (расхода, температуры,  давления), водные смеси, фильтры, бэкплейты.

  • Рассмотрим обязательные компоненты.

Ватерблок (англ. waterblock) – теплообменник, передающий  тепло от нагревшегося элемента (процессора, видео чипа и др.) воде. Он состоит из медного основания и металлической крышки с набором креплений.

Ватерблок

Основные типы ватерблоков: процессорные, для видеокарт, на системный чип (северный мост). Ватерблоки для видеокарт могут быть двух типов: закрывающие только графический чип («gpu only»)  и закрывающие все нагревающиеся элементы – фулкавер (англ. fullcover).

Ватерблок Swiftech MCW60-R( gpu-only):

Ватерблок Swiftech MCW60-R

Ватерблок EK Waterblocks EK-FC-5970(Фулкавер):

Ватерблок EK Waterblocks EK-FC-5970

Для увеличения площади теплопередачи применяется микроканальную и микроигольчатая  структура. Ватерблоки делают без сложной внутренней структуры если  производительность не столь критична.

Чипсетный ватерблок XSPC X2O Delta Chipset:

XSPC X2O Delta Chipse

Радиатор. В СВО радиатором называют водно-воздушный теплообменник, передающий воздуху  тепло от воды в ватерблоке. Есть два подтипа радиаторов СВО: пассивные ( безвентиляторные), активные (продуваемые вентилятором).

Безвентиляторные можно встретить довольно редко (например, в СВО Zalman Reserator) потому, что данный тип радиаторов обладает более низкой эффективностью. Такие радиаторы занимают много места и их сложно поместить  даже в модифицированном корпусе.

Пассивный радиатор Alphacool Cape Cora HF 642:

Alphacool Cape Cora HF 642

Активные радиаторы более распространенны в системах водяного охлаждения из-за  лучшей  эффективности. Если использовать тихие или бесшумные вентиляторы, то можно добиться тихой или бесшумной работы СВО. Эти радиаторы могут быть  самого разного размера, но в основном их делают  кратными  к размеру 120 мм или 140мм вентилятора.

Радиатор Feser X-Changer Triple 120mm Xtreme

Feser X-Changer Triple 120mm Xtreme

Радиатор СВО за компьютерным корпусом:

Радиатор СВО

Помпа – электрический насос, отвечает за циркуляцию воды в контуре СВО. Помпы могут работать от 220 вольт или от 12 вольт. Когда в продаже было мало специализированных компонентов  для СВО, то использовали аквариумные помпы, работающие  от 220 вольт.  Это  создавало некоторые трудности, из-за необходимости  включать помпу синхронно с компьютером. Для этого применяли реле, включающее  помпу автоматически при старте компьютера. Сейчас есть специализированные помпы, обладающие компактными размерами и хорошей производительностью, работающие от 12 вольт.

Компактная помпа Laing DDC-1T

Laing DDC-1T

У современных ватерблоков  довольно высокий коэффициент гидросопротивления, поэтому желательно применять специализированные помпы, так как  аквариумные не позволят  современной  СВО работать на полную производительность.

Шланги или трубки  также являются обязательными  компонентами  любой СВО, по ним вода течет от одного компонента к другому. В основном применяют шланги из ПВХ, иногда из силикона. Размер шланга не сильно влияет на производительность в целом, важно не брать слишком тонкие (менее 8 мм.) шланги.

Флуоресцентный шланг Feser Tube:

Feser Tube

Фитингами называют специальные соединительные элементы для подключения  шлангов  к компонентам СВО (помпе, радиатору, ватерблокам). Фитинги нужно вкручивать в отверстие с резьбой находящееся на компоненте СВО. Вкручивать их нужно не очень сильно (гаечных ключей не понадобится).  Герметичность достиается уплотнительным кольцом из резины. Подавляющее большинство компонентов продаются без фитингов в комплекте. Это делается затем, чтобы пользователь мог  сам подобрать фитинги, под нужный шланг. Самый распространенный тип  фитингов – компрессионный (с накидной гайкой) и ёлочка (используются штуцеры). Фитинги бывают прямыми  и угловыми. Фитинги еще различаются по типу резьбы.  В компьютерных СВО чаще встречается резьба стандарта G1/4″, реже  G1/8″ или G3/8″.

Водяное охлаждение компьютера:

Фитинги типа ёлочка от Bitspower:

Bitspower

Компрессионные фитинги Bitspower:

Bitspower

Вода тоже относится к обязательным компонентом СВО.   Лучше всего заправлять дистиллированную воду  (очищенную от примесей методом дистилляции). Используется и  деионизированная вода, но существенных отличий от дистиллированной у нее нет, только  производится другим способом. Можно применять специальные смеси или воду с различными присадками.  Но использовать воду из-под крана или бутилированную для питья не рекомендуется.

Необязательные компонентами  являются компоненты,  без которых СВО стабильно может работать, и не влияют на производительность. Они делают эксплуатацию СВО более удобной.

Резервуар (расширительный бачек) считается необязательным компонентом СВО, хотя и присутствует в большинстве  систем водяного охлаждения. Системы с резервуаром  более удобны в заправке. Объем воды резервуара не принципиален,  он не влияет на производительность СВО. Формы резервуаров  встречаются самые разные и выбирают их по критериям удобства установки.

Трубчатый резервуар  Magicool:

Magicool

Cливной кран  используется для удобного  слива воды из контура СВО. Он перекрыт в обычном состоянии, и открывается,  когда необходимо слить воду из системы.

Сливной кран Koolance:

Koolance

Датчики, индикаторы и измерители. Выпускается довольно много различных измерителей, контролеров, датчиков для СВО. Среди них  встречаются электронные датчики температуры воды, давления и потока воды, контролеры, согласующие работу вентиляторов с температурой, индикаторы движения воды и так далее. Датчики давления и расхода воды нужны лишь в системах, предназначенных для тестирования компонентов СВО, так как эта информация для обычного пользователя просто несущественна.

Электронный датчик потока от AquaCompute:

AquaCompute

Фильтр. Некоторые системы водяного охлаждения комплектуются фильтром, включенным в контур. Он предназначен для отфильтровывания разнообразных мелких частиц попавших в систему (пыль, остатки пайки, осадок).

Присадки к воде и различные смеси. Дополнительно к воде  можно использовать различные присадки. Некоторые из них предназначены для защиты от коррозии, другие для предотвращения развития бактерий в системе или  подкрашивания воды. Выпускают также готовые смеси, содержащие воду,  антикоррозионные присадки и краситель. Бывают готовые смеси, повышающие производительность СВО, но повышение производительности от них возможно лишь незначительное. Можно встретить жидкости для СВО, которые сделаны не на основе воды, а использующие специальную диэлектрическую жидкость. Такая жидкость не проводит электрический ток и при утечке на компоненты ПК не вызовет короткого замыкания. Дистиллированная вода тоже не проводит ток, но, если пролившись, попадет на запыленные участки ПК, может стать электропроводной. Необходимости в диэлектрической жидкости нет,  потому, что хорошо протестированная СВО не протекает и обладает достаточной надежностью. Важно также соблюдать инструкцию к присадкам.  Не нужно лить их сверх меры, это может привести к плачевным последствиям.

Зеленый флуоресцентный краситель:

краситель

Бэкплейтом называют  специальную крепежную пластину, которая нужна, чтобы разгрузить текстолит материнской платы либо видеокарты от создаваемого креплениями ватерблока усилия, и  уменьшить изгиб текстолита, снижая риск поломки. Бэкплейт  не является обязательным компонентом, но очень часто встречается в СВО.

Фирменный бэкплейт от Watercool:

Watercool

Второстепенные ватерблоки. Иногда, ставят дополнительные ватерблоки на слабо греющиеся компоненты. К таким компонентам относятся: оперативная память, силовые транзисторы цепей питания, жесткие диски и южный мост. Необязательность таких компонентов для системы водяного охлаждения заключается в том, что, они не несут  улучшения разгона и никакой дополнительной стабильности системы или других заметных результатов не дают. Это связано с малым тепловыделением таких элементов, и с неэффективностью применения ватерблоков для них. Положительной стороной установки таких ватерблоком можно назвать только внешний вид, а минусом является  повышение гидросопротивления в контуре и соответственно увеличение стоимости всей системы.

Ватерблок для силовых транзисторов на материнской плате от EK Waterblocks

EK Waterblocks

Кроме обязательных и необязательных компонентов СВО существует еще категория гибридных компонентов. В продаже встречаются компоненты, которые представляют собой два или более компонента СВО в одном устройстве. Среди таких устройств известны: гибриды помпы с процессорным  ватерблоком,  радиаторы для СВО совмещенные с встроенной помпой и резервуаром. Такие компоненты  заметно  уменьшают занимаемее ими место и более удобны в установке. Но такие  компоненты мало пригодны к апгрейду.

Выбор системы СВО

Различают  три основных типа СВО: внешние,  внутренние и встроенные. Они различаются расположением по отношению к корпусу компьютера их основных компонентов (радиатор/теплообменник, резервуар, насос).

Внешние системы водяного охлаждения, выполняют  в виде отдельного модуля ( «ящика») , который при помощи шлангов подключен  к ватерблокам, которые установлены на комплектующих в самом корпусе ПК. В корпус внешней системы водяного охлаждения практически всегда выносится радиатор с вентиляторами, резервуар, помпа, и, иногда, для помпы с датчиками блок питания. Среди  внешних систем хорошо известны системы водяного охлаждения Zalman семейства Reserator. Такие системы устанавливаются  в виде отдельного модуля, и их удобство заключается в том, что пользователю  не нужно дорабатывать и переделывать корпус своего компьютера.  Их неудобство состоит только в габаритах и  сложнее становится  перемещать компьютер даже на небольшие расстояния, например, в другую комнату.

Внешняя пассивная СВО Zalman Reserator:

СВО Zalman Reserator

Встроенная охлаждающая система вмонтирована в корпус и продаётся в комплекте с ним. Такой  вариант является самым простым в обращении, потому, что вся СВО уже смонтирована в корпусе,  и снаружи нет громоздких конструкций. К недостаткам такой системы можно отнести высокую стоимость и то, что старый корпус ПК будет  бесполезным.

Внутренние системы водяного охлаждения расположены  полностью внутри корпуса ПК. Иногда,  некоторые компоненты внутренней СВО (в основном радиатор), устанавливают на внешней поверхности корпуса. Достоинством внутренних СВО является удобство переноски.  Нет необходимости слива жидкости при транспортировке. Также при установке внутренних СВО не страдает внешний вид корпуса, и при моддинге СВО может отлично украсить корпус вашего компьютера.

Проект Overclocked Orange:

Overclocked Orange

Недостатками  внутренних систем водяного охлаждения являются сложность их установки и  необходимость модификации корпуса во многих случаях. Также внутренняя СВО прибавляет вашему корпусу несколько килограмм веса.

Планирование и установка СВО

Водяное охлаждение,  в отличие от воздушного,  требует некоторого планирования перед установкой. Ведь жидкостное охлаждение налагает некоторые ограничения, которые необходимо принять во внимание.

Во время установки нужно всегда помнить об удобстве. Необходимо оставлять свободное место, чтобы  дальнейшая работа с СВО и комплектующими не вызывала трудностей. Нужно, чтобы трубки с водой свободно проходили  внутрь корпуса и между компонентами.

Кроме того течение жидкости не должно ничем ограничиватся. При прохождении через каждый водоблок охлаждающая жидкость нагревается. Чтобы снизить эту проблему, продумывается схема с параллельными путями  охлаждающей жидкости. При таком подходе поток воды менее нагружен, и в водоблок  каждого компонента поступает  вода, которая не нагрета другими компонентами.

Хорошо известен набор Koolance EXOS-2. Он  предназначен для работы с соединительными трубками сечения 3/8″.

При планировании расположения своей СВО рекомендуется сначала начертить простую схему. Начертив план на бумаге, приступают к реальной сборке и установке. Необходимо разложить на столе все детали системы и приблизительно промерять нужную длину трубок. Желательно оставлять запас и не обрезать слишком коротко.

Когда подготовительные работы проделаны,  можно начинать установку водоблоков. На задней стороне материнской платы за процессором  устанавливается  металлическая скоба крепления головки охлаждения Koolance для процессора. Эта скоба крепления комплектуется пластмассовой прокладкой, для предотвращения замыкания с материнской платой.

материнская плата

Затем снимается радиатор, прикреплённый к северному мосту материнской платы. В примере используется материнская плата Biostar 965PT, у которой охлаждение чипсета происходит с помощью пассивного радиатора.

Biostar 965PT

Когда радиатор чипсета снят, нужно установить элементы крепления водоблока для чипсета. После установки этих элементов материнскую плату  ставят снова в корпус ПК. Не забывайте  удалять с процессора и чипсета старую термопасту перед нанесением тонким слоем новой.

После этого  осторожно устанавливаются водоблоки на процессор. Не прижимайте их с силой. Применяя силу вы можете повредить комплектующие.

устанавливаются водоблоки на процессор

Потом проводятся работы с видеокартой. Необходимо удалить имеющийся на ней радиатор и заменить его водоблоком. Когда водоблоки установлены, можно подсоединить трубки и вставить видеокарту в слот PCI Express.

вставить видеокарту в слот PCI Express

Когда все  водоблоки установлены, следует подсоединить все оставшиеся трубки. Последней подключается трубка, ведущая к внешнему блоку СВО. Проверьте правильность направления движения воды: охлаждённая жидкость должна сначала поступать в водоблок процессора.

После выполнения всех этих работ вода  заливается в резервуар. Наполнять резервуар нужно только до уровня, который указан в инструкции. Внимательно смотрите за всеми креплениями и при малейших признаках протечки, немедленно устраните проблему.

признаки протечки

Если все правильно собрано и не возникло протечек, нужно прокачать охлаждающую жидкость для удаления пузырьков  воздуха. Для системы Koolance EXOS-2 нужно замкнуть  контакты на блоке питания ATX, и подать питание водяному насосу, не подавая питание на материнскую плату.

Пусть система немного поработает в таком режиме, а вы осторожно наклоняйте компьютер то в одну, то в другую стороны, чтобы избавится от пузырьков воздуха. После выхода всех пузырьков  добавьте охлаждающей жидкости, если потребуется. Если пузырьков воздуха больше не видно, то можно запускать систему полностью. Теперь вы можете протестировать эффективность установленной СВО.  Хотя водяное охлаждение для пк еще является редкостью для обычных пользователей, его преимущества неоспоримы.

27sysday.ru

Устройство автомобилей



Жидкостная система охлаждения может быть термосифонной и принудительной, открытой и закрытой. Большинство современных автомобильных двигателей оснащены принудительной системой охлаждения закрытого типа из-за ряда существенных преимуществ.

При термосифонной системе охлаждения жидкость циркулирует по рубашке охлаждения и соединенному с ней радиатору благодаря разнице плотности горячей и холодной жидкости в верхней и нижней части системы (горячая жидкость поднимается, а холодная опускается самотеком, без применения перекачивающих устройств). Такая система проста, но малоэффективна и требует радиатор увеличенной емкости. Поэтому термосифонная система жидкостного охлаждения распространения на автомобильных двигателях не получила; обычно применяется принудительная система охлаждения, в которой циркуляция охлаждающей жидкости обеспечивается жидкостным насосом.

Открытая система сообщается с окружающей средой (атмосферой) непосредственно, т. е. в такую систему постоянно может поступать воздух, а из системы выпускаться пар. Закрытая система сообщается с окружающей средой посредством специальных клапанов, размещенных в пробке радиатора или крышке расширительного бачка. Такая система сообщается с атмосферой лишь в случае значительного превышения давления в ней, выпуская пар и горячий воздух через клапана. Это позволяют поднять давление и температуру кипения охлаждающей жидкости, благодаря чему можно уменьшить габаритные размеры радиатора.

Закипевшая охлаждающая жидкость резко снижает эффективность системы охлаждения, так как в этом случае в жидкости образуются пузырьки пара, препятствующие циркуляции жидкости и теплообменным процессам. Поэтому современные автомобильные двигатели оснащаются закрытой системой охлаждения, позволяющей использовать более высокий нагрев жидкости без закипания.

***

Устройство и работа жидкостной системы охлаждения

В классическом исполнении жидкостная система охлаждения двигателя состоит из жидкостного и воздушного трактов. Жидкостный тракт системы включает в себя (см. рис. 1): рубашку 6 охлаждения, термостат, радиатор 1, жидкостный насос 5, расширительный бачок 4 и трубопроводы.

Воздушный тракт системы состоит из радиатора 1, вентилятора 9 и направляющих элементов тракта (диффузора).

Принцип действия системы охлаждения заключается в следующем: жидкостный насос 5, приводимый от коленчатого вала двигателя, засасывает охлаждающую жидкость из нижней части радиатора и нагнетает ее в рубашку охлаждения 6. Проходя по каналам и полостям рубашки, жидкость забирает избыток теплоты у цилиндров и головки блока цилиндров, охлаждая детали. Затем охлаждающая жидкость через систему патрубков и термостат поступает в верхний бачок 12 (рис. 1,б) радиатора, откуда по множеству трубок, составляющих сердцевину радиатора, скатывается в нижний бачок, отдавая по пути теплоту и охлаждаясь. Далее охлаждающая жидкость опять засасывается насосом и циркуляция повторяется.

Описанный путь охлаждающей жидкости называют циркуляцией по большому кругу (рис. 2,б).



На пути охлаждающей жидкости из рубашки охлаждения в верхнем патрубке устанавливается специальный прибор - термостат, представляющий собой температурный клапан, который автоматически, в зависимости от степени нагрева, изменяет направление движения охлаждающей жидкости. Если жидкость холодная, т. е. еще не прогрелась до рабочей температуры, клапан термостата перекрывает проход жидкости в радиатор и направляет ее сразу в насос, откуда она вновь поступает к рубашке охлаждения двигателя.

Такой путь жидкости, когда она перемещается, минуя радиатор, называется циркуляцией по малому кругу (рис. 2,а).

По малому кругу жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев до рабочих температур. Когда двигатель прогревается, термостат обеспечивает циркуляцию охлаждающей жидкости по большому кругу, через радиатор.

Клапан термостата начинает открываться, пропуская охлаждающую жидкость в радиатор при температуре 70…87 ˚С.

***

Интенсивному охлаждению жидкости в радиаторе способствует поток воздуха, создаваемый вентилятором 9. Скорость потока охлаждающего воздуха зависит от скорости движения автомобиля. Изменить скорость воздушного потока можно с помощью жалюзи 2 (рис. 2,а), установленных перед радиатором. На современных автомобилях изменение интенсивности обдува радиатора воздухом осуществляется автоматическими устройствами, например, вентиляторами с приводом от управляемого термодатчиком электродвигателя, гидромуфтами различных конструкций и т. п.

Охлаждающая жидкость может подводиться к рубашке охлаждения двигателя через нижний пояс цилиндров, верхний пояс и головку блока цилиндров. Подвод охлаждающей жидкости через нижний пояс цилиндров характерен для дизелей, которые допускают повышение температуры головки блока цилиндров, способствующее лучшему воспламенению рабочей смеси от сжатия.

В двигателях с принудительным воспламенением, склонных к детонации при наличии в камере сгорания перегретых зон, охлаждающая жидкость подводится через верхние пояса (рис. 1,б) или даже через головку блока цилиндров (рис. 1,в). В последнем случае нагретые участки головки блока цилиндров охлаждаются наиболее интенсивно.

Для подвода охлаждающей жидкости в рубашку охлаждения иногда применяют водораспределительные трубы 14 (рис. 1,в), имеющие окна против каждого цилиндра. Благодаря этому достигается параллельный подвод охлаждающей жидкости одинаковой температуры ко всем цилиндрам и улучшается равномерность их охлаждения.

Контроль над работой системы охлаждения осуществляется с помощью датчиков и указателя температуры, а также сигнализатора аварийной температуры охлаждающей жидкости.

Датчики устанавливаются в системе охлаждения двигателя, а указатель и сигнализатор – на приборной доске (щитке приборов) в кабине водителя.

Теплота, отводимая жидкостью от деталей двигателя, используется для подогрева впускного трубопровода, улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

***

Назначение и устройство радиатора


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

k-a-t.ru

СИСТЕМА ЖИДКОСТНОГО ОХЛАЖДЕНИЯ

В системе жидкостного охлаждения циркулирующая жидкость воспринимает теплоту от стенок цилиндров, головки блока и других нагретых деталей и передает эту теплоту через радиатор окружающей среде. По способу циркуляции охлаждающей жидкости различают термосифонные и принудительные (насосные) системы.

В термосифонных системах охлаждения циркуляция жидкости происходит вследствие разности плотностей нагретой и охлажденной жидкости. В насосных системах охлаждения циркуляция жидкости осуществляется с помощью специального насоса. Эта система является более надежной, кроме того, ее масса и объем значительно меньше, чем термосифонной системы охлаждения.

В автомобильных двигателях применяют системы принудительного охлаждения. В качестве теплоносителя обычно используют воду. Однако вследствие низкой температуры кипения и высокой температуры замерзания воды желательна замена ее другими видами теплоносителей. До сих пор еще не найден теплоноситель, удовлетворяющий всем требованиям, предъявляемым к нему (высокая температура кипения, низкая температура замерзания, достаточно высокая теплоемкость, малая вязкость, анти-коррозионность, хорошая смачиваемость, постоянство физических свойств и химического состава, малая стоимость, удобство хранения и эксплуатации). Широкое распространение при эксплуатации двигателей в зимних условиях получили водяные растворы глицерина и гликолей, понижающие температуру замерзания до минус 40—65° С.

Для двигателей с жидкостным охлаждением допускаемая температура охлаждающей жидкости в закрытых системах (система охлаждения герметично закрыта при помощи паро-воздушного клапана) равна 100° С (максимальная, кратковременно допустимая 105° С), а в открытых системах (система охлаждения сообщается с атмосферой через контрольную трубку) 90—95° С.

В современных автомобильных двигателях исключительно применяется система жидкостного охлаждения закрытого типа с принудительной циркуляцией жидкости и с одной или двумя системами регулирования — потемпературамжидкости(термостат) и воздуха (жалюзи перед радиатором).

Принудительная система охлаждения состоит из следующих элементов: рубашек охлаждения цилиндров и головок цилиндров, водяного насоса, радиатора, вентилятора, вспомогательных устройств и контрольно-измерительных приборов (термостаты, жалюзи, термометры и манометры).

1. Рубашка охлаждения

Рубашки охлаждения цилиндров и головки цилиндров проектируют с учетом прочности блока и головки и технологичности их изготовления. Скорость протекания воды в рубашке колеблется в пределах 0,5—1,0 м/сек. Для равномерного охлаждения всех цилиндров охлаждающую жидкость подводят отдельно к каждому цилиндру. Для этого внутри блока цилиндров делают каналы, в которые подается вода, поступающая к цилиндрам через окна в стенках этих каналов. Перепуск воды осуществляется через несколько отверстий в блоке и головке цилиндров, причем эти отверстия расположены в зоне наиболее нагретых частей головки цилиндров. Полости головки цилиндров должны иметь такую форму, чтобы при заполнении системы водой, в них не могли образовываться паровые и воздушные пробки. Кроме того, в системе охлаждения не должна оставаться вода при сливе ее через выпускные краны.

Подвод охлаждающей жидкости может производиться: 1) к нижней части цилиндров, что позволяет избежать образования застойных зон и паро-воздушных пробок, нарушающих циркуляцию; 2) к верхней части блока, в этом случае нижняя часть рубашки исключается из принудительной циркуляции, вследствие чего повышается температура нижнего пояса гильз; 3) к головке цилиндров, откуда относительно небольшое количество жидкости поступает в блок, а остальное — в радиатор. В последнем случае рубашки блоков неполностью включены в систему принудительной циркуляции и цилиндры омываются жидкостью, предварительно нагретой в головке. При этом циркуляция жидкости в блоке создается путем отсоса ее насосом через торцовые окна. Эта система обеспечивает быстрое прогревание гильз после пуска двигателя.

2. Водяной насос

В системе охлаждения обычно применяется водяной насос центробежного типа. Валик насоса, объединенный с валиком вентилятора, приводится в действие клиновидным ремнем от шкива на переднем конце коленчатого вала. Радиальные зазоры между крыльчаткой и корпусом водяного насоса должны бытьнеболее1мм,осевые — неболее0,2 мм.Передаточное отношение привода насоса равно 0,98—1,95. Скорость жидкости во всасывающих патрубках одноступенчатых водяных насосов не превышает 2,5—3 м1сек. Наибольший напор, создаваемый водяным насосом, зависит от сопротивления системы охлаждения. Для нормальной работы системы охлаждения давление в любой точке жидкостного тракта не должно быть меньше давления парообразования жидкости. Напор, создаваемый водяным насосом в автомобильном двигателе, составляет 35—150 кн/м? (3,5— 15 м вод. ст.). Мощность, затрачиваемая на приведение в действие насоса, равна 0,2—0,5% эффективной мощности двигателя.

Для повышения надежности работы системы охлаждения в корпусе насоса на входе перед крыльчаткой располагают винтовой направляющий аппарат для создания вращательного движения поступающей жидкости. Скорость жидкости во впускных каналах не превышает 2,5—3 м/сек.

3. Радиатор

Радиатор предназначен для передачи теплоты воды окружающему воздуху. Для повышения охлаждающего эффекта радиатора подводимый от двигателя поток горячей воды разбивается на ряд мелких струек, каждая из которых проходит по трубке или каналу, обдуваемому воздухом. В автомобильных двигателях радиатор должен иметь небольшую лобовую поверхность при значительной поверхности охлаждения.

Наибольшее распространение получили трубчатые радиаторы . Охлаждающая решетка таких радиаторов состоит из вертикальных трубок плоского, овального или круглого сечения, припаянных к верхнему и нижнему резервуарам радиатора. Эти трубки проходят через ряд тонких горизонтальных пластин, которые повышают эффективность охлаждения и жесткость конструкции. Овальные и плоские трубки лучше сопротивляются разрыву, лучше обтекаются воздухом и имеют большую относительную поверхность охлаждения, чем круглые.

В пластинчатых радиаторах охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям 2 пластин 1. Верхние и нижние концы пластин впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух проходит между спаянными пластинами. Для увеличения поверхности охлаждения пластины делают волнистыми. Такие радиаторы быстро загрязняются, имеют большое количество паяных швов и требуют более тщательного ухода, поэтому их применяют сравнительно редко.

В трубчатом и пластинчатом радиаторах охлаждающая жидкость протекает по трубкам, омываемым снаружи воздухом.

В сотовом радиаторе воздух проходит по горизонтальным трубкам, омываемым снаружи охлаждающей жидкостью. К достоинствам радиатора такого типа относится большая, чем в радиаторах других типов, поверхность охлаждения. Недостатки сотовых радиаторов те же, что и у пластинчатых, и это препятствует их широкому распространению.

Глубина сердцевины радиатора составляет 75—150 мм. Сердцевинурадиатораглубиной75—150ммнаглухосоединяют с резервуарами при помощи пайки. Радиатор устанавливается на резиновых подушках и крепится к раме автомобиля. В верхнем резервуаре расположен заливной патрубок с сетчатым фильтром. В этом патрубке находится конец контрольной трубки, которая внизу сообщается с окружающей средой и предохраняет трубки радиатора от разрыва.

У двигателей с закрытой системой охлаждения для предохранения ее от разрушения в пробке горловины радиатора устанавливают паро-воздушный клапан , состоящий из двух клапанов: парового и воздушного. Паровой клапан 2 предохраняет систему от разрушения при повышении температуры жидкости и регулируется на давление 20—30 кн/м2 (0,2—0,3 кГ/см2). При этом давлении паровой клапан перепускает пар в атмосферу.

Воздушный клапан 1 предохраняет систему от разрушения при падении давления в системе (при остывании жидкости), и его регулируют на разрежение открытия 1 —4 кн/м2 (0,01 —0,04 кГ/см2). Приэтом давленииклапанперепускаетвоздухизатмосферы.

Скорость жидкости в трубках радиатора должна быть 0,7— 0,9 м/сек. Скорость воздуха, отнесенная к сечению перед фронтом радиатора, изменяется в пределах 7—12 м/сек.

При проектировании размеры радиатора выбирают в соответствии с компоновкой автомобиля и целесообразными затратами мощности на привод вентилятора для обеспечения нормального теплового состояния двигателя. Количество воздуха, проходимого через радиатор автомобильного двигателя, равно (0,2 — т — 0,3) Nе л/ч [или (140 ч — 220) Nnкг/ч, если Neв л. с].

Ориентировочно охлаждающая поверхность радиатора для легковых автомобилей F= (13 -т — 20) 10~5 Neм2, где Nе в em [F= = (0,10 — 5 — 0,15) Neм2, если N(1 в л. с] и для грузовых автомобилей F= (20 ч — 40) 10 5 Neм2 [F= (0,15 -*■ 0,3) Neм2, если Neв л. с].

4. Вентилятор

В автомобильных двигателях преимущественно применяют вентиляторы осевого типа. Диаметры вентиляторов колеблются в пределах 0,3—0,7 м (большие значения относятся к вентиляторам грузовых автомобилей). Наивыгоднейший угол атаки для плоских лопастей 40—45°, а для выпуклых — около 35°. Ширина лопастей равна 30—70 мм. Число лопастей, изготовляемых из листовой стали толщиной 1,25—1,8 мм, не превышает 4-6.

Для уменьшения вибрации и шума лопасти вентилятора располагают Х-образно, попарно под углами 70 и 110°. Вентиляторы устанавливают на одном валу с водяным насосом. Привод вентилятора осуществляется с помощью ременной передачи, ведущий шкив которой установлен на коленчатом валу двигателя. Расстояние между радиатором и вентилятором достигает 80— 100 мм при установке направляющего кожуха и 10—15 мм без него.

Для повышения экономичности могут применяться вентиляторы с переменной производительностью, у которых число оборотов изменяется от максимального до нуля или изменяется угол наклона лопаток к направлению воздушного потока. Эта регулировка осуществляется с помощью термостата. При пуске холодного двигателя термостат устанавливает лопасти вентилятора в положение, при котором воздух через радиатор не просасывается или отсасывается от двигателя к радиатору для ускорения прогрева последнего.

Для уменьшения мощности, необходимой для привода вентилятора, и улучшения работы системы охлаждения разработаны и применяются отключающиеся вентиляторы с автоматическим приводом (двигатели ГАЗ-53А и др.). В этом случае шкив привода вентилятора снабжается электромагнитной муфтой с обмоткой, а сам вентилятор со ступицей устанавливается свободно па подшипниках. При нормальной температуре воды в системе охлаждения температурный датчик, расположенный в верхнем бачке радиатора, размыкает электрическую цепь муфты, и вращение от шкива вентилятору не передается — вентилятор выключен. При повышении температуры до 90—95° С датчик замыкает электрическую цепь, включая муфту, которая притягивает ступицу вентилятора и последний начинает вращаться вместе со шкивом.

При подборе вентилятора следует учитывать, что количество воздуха, подаваемого вентилятором, пропорционально первой степени числа оборотов коленчатого вала, создаваемый напор — второй степени числа оборотов, а потребляемая мощность — третьей степени числа оборотов.

5. Термостат

Принцип действия двухклапанного термостата состоит в следующем.

Когда вода в системе холодная, то клапан 1 перекрывает отверстие, ведущее в радиатор, а вода из головки цилиндров поступает через окна 2 в корпус 4 к впускному патрубку водяного насоса, минуя радиатор. Когда температура воды поднимается до 65° С (по ГОСТу температура начала открытия клапана равна 70—75° С), гофрированный баллон 5 термостата вследствие увеличенияупругостипаровсмесибудетдеформироватьсяи клапан 1 начнет открываться, а клапан 3 перекроет окна 2 в корпусе термостата. В результате этого поток воды направляется в радиатор, а перепуск к водяному насосу прекращается. Клапан 1 открывается полностью при температуре воды 90° С (по ГОСТу температура полного открытия клапана равна 83—90° С). При охлаждении воды термостат возвращает клапаны в первоначальное положение. Суммарная площадь окон термостата должна быть не менее 70% площади проходного сечения основного клапана.

Недостатком жидкостных термостатов является их зависимость от внешнего давления, что может вызвать значительное колебание температуры открытия клапана.

В некоторых моделях двигателей (ЗИЛ-130 и др.) получил применение более надежно работающий термостат с твердым наполнителем. Такой термостат представляет собой баллон 13, закрытый герметично крышкой 10 . Между баллоном и его крышкой закреплена резиновая мембрана 11. Внутренность баллона заполнена активной массой 12, состоящей из церезина (кристаллический нефтяной воск), перемешанного с медным порошком. Эта масса имеет значительный коэффициент’ объемного расширения, что обусловливает большие перестановочные усилия и нечувствительность термостата к изменению внешнего давления. Наибольшее расширение достигается при температуре 75—80° С.

На мембрану опирается шток 9, расположенный в направляющей части крышки и шарнирно соединенный с клапаном 7, который установлен на шарнирной опоре в горловине 6 водяного патрубка. Клапан 7 постоянно прижимается к краям горловины пружиной 8.

Для дополнительного регулирования температурного режима системы охлаждения служат шторки и решетки из поворачивающихся пластин (жалюзи), устанавливаемые перед радиатором и регулируемые вручную или автоматически (с помощью термостата).

maestria.ru


Смотрите также