Разгон i7 6850k


Разгон и сравнение процессоров. Часть II: решения от Intel — Skylake-X, Broadwell-E, Coffee Lake-S, Kaby Lake-S и Skylake-S

Компания Intel более 10 лет чувствовала себя вольготно на процессорном рынке, пока AMD не представила решения на базе микроархитектуры Zen. Последние оказались достаточно производительными, что заставило чипмейкера корректировать свои планы, дабы составить конкуренцию многоядерным продуктам оппонента. Количество ядер для HEDT-платформы было доведено до 18 в самой старшей модели Core i9, что при наличии технологии Hyper-Threading позволило обрабатывать 36 потоков за раз, в то время как AMD Ryzen Threadripper — максимум 32. Для новинок потребовался очередной сокет — LGA2066, и материнские платы на чипсете X299 с его поддержкой.

Процессор Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Core i7-7740X Core i5-7640X
Ядро Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Kaby Lake-X Kaby Lake-X
Разъём LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066
Техпроцесс, нм 14 14 14 14 14 14 14 14 14
Число ядер (потоков) 18 (36) 16 (32) 14 (28) 12 (24) 10 (20) 8 (16) 6 (12) 4 (8) 4
Номинальная частота, ГГц 2,6 2,8 3,1 2,9 3,3 3,6 3,5 4,3 4
Частота Turbo Boost, ГГц 4,2 4,2 4,3 4,3 4,3 4,3 4,0 4,5 4,2
Частота Turbo Boost Max, ГГц 4,4 4,4 4,4 4,4 4,5 4,5
Разблокированный на повышение множитель + + + + + + + + +
L1-кэш, Кбайт 18 x (32 + 32) 16 x (32 + 32) 14 x (32 + 32) 12 x (32 + 32) 10 x (32 + 32) 8 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 18 x 1024 16 x 1024 14 x 1024 12 x 1024 10 x 1024 8 x 1024 6 x 1024 4 x 256 4 x 256
L3-кэш, Мбайт 24,75 22 19,25 16,5 13,75 11 8,25 8 6
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2666
Каналов памяти 4 4 4 4 4 4 4 2 2
Линий PCI-E 44 44 44 44 44 28 28 16 16
TDP, Вт 165 165 165 140 140 140 140 112 112
Рекомендованная стоимость, $ 1999 1699 1399 1199 999 599 389 350 243

Особняком здесь стоят модели Core i7 и Core i5, обладающие лишь четырьмя ядрами, а младшая даже лишена Hyper-Threading.

Под натиском доступных решений AMD не осталась в стороне и массовая платформа. Модели Core i7 и Core i5 обзавелись шестью ядрами и, соответственно, увеличенным кэшем третьего уровня. Досталось и процессорам Core i3 — они лишились поддержки Hyper-Threading, но при этом способны обрабатывать четыре потока благодаря аналогичному числу физических ядер. Но не обошлось и без ложки дегтя. Несмотря на используемый сокет LGA1151, новинки оказались несовместимы с платами на чипсетах 200 и 100 серий. Для их работы потребовались «материнки» на логике 300 серии. Пока что доступны решения на старшем чипсете Z370, но на днях должны быть представлены и более дешевые хабы — h470, B360 и h410.

Процессор Core i7-8700K Core i7-8700 Core i5-8600K Core i5-8400 Core i3-8350K Core i3-8100
Ядро Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S
Разъём LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14 14
Число ядер (потоков) 6 (12) 6 (12) 6 6 4 4
Номинальная частота, ГГц 3,7 3,2 3,6 2,8 4,0 3,6
Частота Turbo Boost, ГГц 4,7 4,2 4,3 4,0  –
Разблокированный на повышение множитель + + +
L1-кэш, Кбайт 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 6 x 256 6 x 256 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 12 12 9 9 8 6
Графическое ядро UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630
Частота графического ядра, МГц 350–1200 350–1200 350–1150 350–1050 350–1150 350–1100
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2400
Каналов памяти 2 2 2 2 2 2
TDP, Вт 95 65 95 95 91 65
Рекомендованная стоимость, $ 370 312 258 187 179 117

В этом тестировании примут участие знаковые процессоры компании Intel последних лет. Core i5-6600K (Skylake-S) является представителем первой настольной линейки, где появилась поддержка DDR4. В следующем поколении продуктов, откуда мы выбрали Core i7-7700K (Kaby Lake-S), разработчики больше внимания уделили развитию интегрированной графики, но разгонный потенциал самых дорогих моделей оказался повыше. Долгожданные изменения произошли в последнем, восьмом, поколении — число ядер в семействах Core i5 и Core i7 теперь увеличилось до шести, у нас в распоряжении оказался Core i5-8600K (Coffee Lake-S). Сегмент HEDT также сложно обойти вниманием, Core i7-6850K (Broadwell-E) — один из первых ЦП, выпущенных на 14-нм техпроцессе, архитектурные изменения были небольшими, тянущимися корнями к Haswell-E. Core i7-7820X (Skylake-X) представляет концептуально новый подход разработчика: на смену кольцевой шине пришла ячеистая (mesh) структура, а размер кэша L2 оказался увеличен за счёт L3. Будет ли такое архитектурное построение процессоров теперь общепринятым — покажет лишь время. Ниже расположена таблица с их характеристиками.

Процессор Core i7-7820X Core i7-6850K Core i5-8600K Core i7-7700K Core i5-6600K
Ядро Skylake-X Broadwell-E Coffee Lake-S Kaby Lake-S Skylake-S
Разъём LGA2066 LGA2011-3 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14
Число ядер (потоков) 8 (16) 6 (12) 6 (6) 4 (8) 4 (4)
Номинальная частота, ГГц 3,6 3,6 3,6 4,2 3,5
Частота Turbo boost, ГГц 4,3 3,8 4,3 4,5 3,9
L1-кэш, Кбайт 8 x (32+32) 6 x (32+32) 6 x (32+32) 4 x (32+32) 4 x (32+32)
L2-кэш, Кбайт 8 x 1024 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 11 15 9 8 6
Графическое ядро Intel UHD Graphics 630 Intel HD Graphics 630 Intel HD Graphics 530
Частота графического ядра, МГц 350–1150 350–1150 350–1150
Число унифицированных шейдерных процессоров 24 24 24
Поддерживаемая память DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2400DDR3L-1600 DDR4-2133DDR3L-1600
Каналов памяти 4 4 2 2 2
TDP, Вт 140 140 95 91 91

Как и в перовой части текущего цикла статей, где рассматривались представители конкурирующего лагеря, мы будем проводить оверклокинг экземпляров ЦП с выяснением их разгонного потенциала (Core i7-6850K — лишь формально, поскольку это его не первое появление на публике). В завершении будут общие сводные данные по производительности стендов в ряде бенчмарков, а в третьей, завершающей части все системы сойдутся в условиях нагрузок играми.

Допускаю, для полноты картины многим из читателей не будет хватать той или иной модели процессора. Не так давно мы выясняли, как появление поддержки DDR4 оказало влияние на финальное быстродействие Core i5-6600K. Там же приняли участие немало «народных» моделей ЦП. Призываю ознакомиться с теми результатами и мысленно провести корреляцию с итогами этого обзора.

Тестовые стенды для LGA2066 и LGA2011-3

Для систем HEDT были подобраны следующие комплектующие:

  • материнская плата №1: ASUS Prime X299-Deluxe (UEFI 1004);
  • материнская плата №2: ASRock Fatal1ty X99 Professional Gaming i7 (UEFI P1.40);
  • СЖО: be quiet! Silent Loop 280mm;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C14Q-32GTZ (4x8 ГБ, 3200 МГц, 14-14-14-34-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.192);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), Intel Turbo Boost Max Technology 3.0 Driver (1.0.0.1033), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i7-7820X

Мы использовали розничный экземпляр с батчем L716B364:

Процессоры Intel из сегмента HEDT характеризуются поддержкой третьей версии Turbo Boost. Уже на заводе производитель отмечает наиболее «способные» ядра, они будут привлекаться во время лёгких нагрузок на ЦП, когда число активных потоков будет невелико. В то же самое время энтузиастам такой жест от вендора может навредить в случае, когда ядра с лучшим оверкокерским потенциалом окажутся не на первых ролях в такой заведомо расписанной схеме. Кто знает, быть может, в развитии следующего поколения этой технологии инженеры Intel откроют способ для ручной установки подобного приоритета.

В простое частота на ядрах опускается до 1,2 ГГц. Наблюдать за напряжением привычными методами вроде диагностических утилит будет в корне неверно. Для нашей платы оно отображалось как 0,95 В.

Как множитель, так и действующее напряжение для каждого ядра могут быть разным. Однопоточный тест SuperPI «ускоряет» одно из ядер до 4,5 ГГц (у нашего экземпляра оно пятое по счёту), а напряжение всё так же остаётся равным 0,95 В (что, очевидно, идёт вразрез с реалиями). Частота Uncore была на уровне 2,4 ГГц.

И при полной нагрузке на процессор напряжение не увеличилось, оно, якобы, даже слегка уменьшилось и оказалось равно 0,928 В. Ядра функционировали на частоте 4,0 ГГц, блок Uncore — без изменений.

Общий подход к проведению анализа разгонного потенциала подробно изложен в соответствующей части обзора материнской платы ASUS Prime X299-A. Там рассматривался инженерный экземпляр Core i7-7820X, а участник именно этого тестирования по той же схеме подвергался анализу на другом устройстве — MSI X299 SLI Plus. Для подробного знакомства будет правильно изучить оба материала, а я воспользуюсь общим итогом тех наработок.

Итак, известен предельный разгон этого процессора — 4,6 ГГц для нагрузки класса Cinebench R15. Но такую планку он не удержал во время нашего тестирования, наиболее критичным был запуск x265 HD Benchmark. Пришлось откатиться на один пункт, уровень 4,5 ГГц уже придал системе ожидаемую стабильность. Про запуск LinX или каких-либо ещё стресс-тестов речь не идёт.

Подчеркну, здесь производился комплексный разгон: ядер, памяти и блока Uncore. А ещё я не занимался тонкой подстройкой работы каждого из ядер — наверняка кое-где можно было бы надбавить итоговое частотное значение, равно как и не выполнялась подстройка сложной схемы с приоритетностью ядер в зависимости от типа нагрузки. Потому в однопоточных тестах результаты, скорее всего, на несколько процентов могут быть лучше. Впрочем, подавляющее большинство сценариев являются многопоточными, а результаты там — наиболее интересны.

Процессор не скальпировался, а охлаждала его одна из самых эффективных готовых двухсекционных СЖО. Между тем, разница именно в наших тестах по температуре ядер относительно лучших моделей суперкулеров едва превышала один градус (на эту роль я привлекал лабораторный Cryorig R1 Ultimate). Замеры проводились с иным набором памяти, где радиаторы имели меньшую высоту, с ними эффективная частота была поменьше. У модулей класса G.Skill TridentZ на сокете LGA2066 имеется общая проблема совместимости. Узел VRM на протяжении всего времени замеров обдувался непосредственно одним среднескоростным вентилятором с крыльчаткой 140 мм (Cryorig XF140). Такие средства были скорее страховкой, чем насущной необходимостью, про серьёзный нагрев стабилизатора речь не шла.

Разгон Core i7-6850K

Этот участник принимал участие в сравнительных тестах с Ryzen 7, его батч — J618B767.

Занимательные сведения о возможностях семейства этого CPU есть в обзоре десятиядерного Core i7-6950X. Я сконцентрируюсь лишь на поведении нашего испытуемого в рамках этого тестирования. Итак, приоритет ядер в фирменной утилите имеет строго обратный нумерации характер, что весьма любопытно.

Частота в простое равна 1,2 ГГц, напряжение на ядрах 0,8 В (как и с Core i7-7820X, данные скорее справочные).

С однопоточной нагрузкой он ускорялся до 4 ГГц, роста напряжения вновь не отмечается.

Все двенадцать потоков приводили к повышению напряжения до 1,185 В, на ядрах частота равнялась 3,7 ГГц. Кольцевая шина всё время работала на уровне 2800 МГц.

Начальные параметры имели вот такой вид:

В предыдущем сравнительном обзоре, где использовался этот же процессор, был достаточно жёсткий подход к установке верхней частотной отметки, а теперь, придерживаясь идей, изложенных в предыдущей главе, удалось повысить планку до 4,3 ГГц. Память функционировала с формулой 3,2 ГГц, а блок Uncore — на грани 3,3 ГГц (с большей величиной уже возникали сбои в ходе выполнения сценариев).

Общий набор действующих переменных выглядел так:

Материнская плата слегка завышает напряжение на памяти, но в ходе тестовых сценариев оно понижается до близкого к 1,5 В уровню.

Тестовые стенды для LGA1151

Системы среднего уровня базировались на таких компонентах:

  • материнская плата №1: ASUS ROG Maximus X Formula (UEFI 0220);
  • материнская плата №2: ASUS ROG Maximus IX Apex (UEFI 0801);
  • кулер: Cryorig R1 Ultimate;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C16D-16GTZB (2x8 ГБ, 3200 МГц, 16-18-18-38-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.248);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i5-8600K. Методика

Мы работали с нескальпированным инженерным образцом процессора, его батч — L717B638.

В отличие от только что рассмотренных моделей, настольные варианты ЦП обладают лишь второй версией Turbo Boost. Нет никаких «особых» ядер, индивидуальной настройки их работы потому также нет. На бумаге всё выглядит достаточно прозаично: однопоточный сценарий заставит процессор разогнаться до 4,3 ГГц, а с ростом числа вычислительных потоков ускорение станет понемногу иссякать, остановившись на границе 4,1 ГГц — для шести активных ядер. Впрочем, достаточно часто производители системных плат отступают от подобных рекомендаций, и уже с начальными настройками этот ЦП будет работать с формулой 4,3 ГГц для любых сценариев. Именно так дело и обстояло с первой материнской платой, которая побывала в нашей лаборатории — ASUS ROG Strix Z370-E Gaming, где мы впервые изучали возможности Core i5-8600K.

Используемая в нынешних испытаниях плата уже не была столь инициативной, придерживаясь общих требований к работе. Лишь значение BCLK было слегка увеличенным. Из-за этого частота в простое равнялась 803,7 МГц вместе с 0,8 вольтами.

В простых сценариях действует напряжение уровня 1,12 В, кольцевая шина разгоняется до 4 ГГц.

Увеличение нагрузки на CPU приводит и к росту напряжения — до 1,152 В, частота будет чуть выше 4,1 ГГц.

Специалисты компании Intel создали ПО для увеличения продуктивности ПК, это XTU — Intel Extreme Tuning Utility. Более детально о нём можно узнать из раздела про разгонные возможности Core i7-7820X. Вкратце: там предусмотрена возможность «на лету» менять множители и напряжение, однако шаг прироста частоты оказывается весьма большим — 100 МГц, если опираться на стандартное значение BCLK. Для ряда случаев ею вполне уместно пользоваться, но сегодня я предпочту фирменное ПО для материнских плат (TurboV Core) от инженеров ASUS, именно по причине открытого тут доступа к дробным значениям опорной частоты. У других вендоров, как правило, есть пусть и не настолько развитые утилиты, но в них множитель ЦП и (или) базовую частоту тоже можно формировать в режиме реального времени.

Для первичного исследования разгонного потенциала я использовал метод, уже описанный в первой части этого цикла сравнений (для процессоров AMD Ryzen). Напомню его суть. В качестве постоянной нагрузки на ЦП привлекался сценарий wPrime «1024M», шаг частоты (опорной или самого ЦП) постепенно увеличивался, ровно до момента, когда система теряла стабильность. Такой метод не подразумевает наличие какой-либо действительной стабильности, но как экспресс-оценка возможностей вполне неплох. Следует помнить про указание правильного числа используемых потоков в настройках. В роли начальных отметок я выбрал 4300 МГц и 1,25 В. Ещё сразу следует правильно подобрать профиль LLC, чтобы уровень напряжения был близок к задуманному. После появления первого BSOD питающее напряжение я повышал ещё на 0,05 В, затем испытания стартовали с частотной отметки, когда стабильность ещё сохранялась в ходе прошлого цикла. В качестве итога получились такие цифры:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-8600K 1,25 1,264 5253
Core i5-8600K 1,3 1,312 5303
Core i5-8600K 1,35 1,36 5352
Core i5-8600K 1,4 ≤ 1,424 5366

Среди профилей LLC у стендовой платы не нашлось такого, с которым стабилизация напряжения у CPU оказалась бы идеальной. С выбранным имел место лёгкий прирост относительно установок.

Внизу есть скриншоты, соответствующие минутным временным отрезкам, чтобы была возможность оценить степень его истинной стабильности (именно под эту стадию экспериментов, а дольше проводить их не имело особого смысла). Там же имеются температурные сведения каждого из ядер.

Поиск стабильности на отметке 5,3 ГГц является одной из категорий наших тестов разгонных возможностей материнских плат. Между собой все они отличаются необходимым и достаточным уровнем процессорного напряжения. Безусловно, в эту категорию не попадает LinX или другие стресс-утилиты, где нагрев CPU значительно выше, каждый пользователь в праве сам решить какую из вершин его процессор должен покорить и как именно это событие фиксировать, чтобы считать свершившимся.

Перед тем, как заняться окончательной стабилизацией системы, я разогнал набор памяти. Мы специально использовали ту же пару модулей, что и в тестах AMD Ryzen. Здесь получилось форсировать такой режим — 3733 МГц с набором задержек 17-18-18-39-2T. Вспомогательные напряжения не повышались вообще, а на модулях действовали 1,48 В. Заслуги не лежат в комбинации «отобранного» CPU и «особой» материнской платы. Чуть больший рубеж этот же комплект покорил с процессором прошлого поколения на системе с основой базового уровня — ASRock Z270 Pro4.

И последний вопрос, который хотелось бы затронуть — частота Uncore. В ходе экспериментов я провел ряд замеров, предлагаю изучить их с целью поиска ответа на вопрос, какой же она должна быть при условии разгона ЦП.

102x39=3978 (МГц)

102x43=4386 (МГц)

102x46=4692 (МГц)

102x49=4998 (МГц)

102x52=5304 (МГц)

Особого, яркого эффекта от разгона этого блока при установленных нами частотах ЦП и ОЗУ я не увидел. Но, как показала практика, подобный «разгон» не требует значимых вспомогательных действий (например, роста каких-либо напряжений, даже второстепенных). Небольшие проблески в улучшении работы памяти всё же можно проследить, особенно если поглядывать на латентность, потому для финальной конфигурации стенда я выбрал классические «минус три» от множителя ЦП.

Теперь, когда все важные частоты определены, можно заняться поиском стабильных рабочих напряжений. Главным образом, это касается процессорного. Остальные фактически не зависели от типа применяемых нагрузочных сценариев. Как и с процессорами AMD, самым требовательным тестом стал x265 HD Benchmark 2.1.0.4.

1,392 В — с этим действующим значением не было проблем как со стабильностью системы, так и со всеми тестовыми утилитами. Перегрева ЦП также не происходило, а он, напомню, не был скальпированным. Не лишним будет напомнить ещё раз — этот режим работы не затрагивает проверку утилитами вроде LinX или Prime95. C ними итоговая комбинация частоты, температуры и напряжения будет уже совершенно другой.

Как и в случае с процессорами для сегмента HEDT, рассмотренными выше, использовалась единая формула частоты для всех вычислительных ядер. Мультипоточным является большинство наших тестов, потому там отличий не будет, а вот для однопоточных сценариев (у каждого из пользователей — свои требования к ПК) оверклокерский рубеж мог бы стать ещё выше, но для этого потребуется привлечь в схему настройки набор из множителей для Turbo Boost. Также для облегчения стабилизации системы метод установки напряжения процессора был выбран с фиксируемым значением, тогда как существует еще как минимум пара способов, но они больше помогут сэкономить немного энергии в простое, а не быстрее подобрать нужное значение (невысокое, но достаточное) напряжения для CPU. Здесь у владельца также появляется ещё одно поле для выбора. Как и с частотой, нашей целью была именно стабильная работа системы в ряде приложений, а не максимальная энергоэффективность разогнанного ПК.

Разгон Core i7-7700K

Эта модель процессоров была одной из самых покупаемых по причине фактической доминации в сегменте настольных ПК. Даже в 2018 году немалое число продаваемых готовых сборок опирается именно на этот ЦП. Для замеров привлекалась инженерная версия с батчем L631F645, без осуществления скальпирования.

Возможности линейки кристаллов Kaby Lake-S описаны в обзоре младшей модели — Core i5-7600K. Весомых отличий от Coffee Lake-S нет, потому методика разгона будет такой же. С начальными настройками частота CPU равна 803,9 МГц (вновь играет роль слегка повышенная базовая), напряжение составляет 0,704 В.

Рост частоты с однопоточными сценариями сформирует 4526 МГц, у напряжения уровень достигал 1,264 В.

Модель используемой материнской платы может быть причислена к тем, где есть явное вмешательство в штатные частотные формулы, потому как многопоточные задания выполнялись при неснижаемой частоте. Рост напряжения составил 1,28 В.

Роль утилиты, где вносились правки в текущую конфигурацию системы «на лету» выполнила всё та же ASUS TurboV Core.

На этот раз уровень LLC я выбрал чуть ниже — Level 5. Прочие параметры были в точности такими, как в прошлой главе.

Значения напряжений и температур ядер в ходе экспресс-тестов отображены на скриншотах ниже.

Финальный результат испытаний имеет следующий вид:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i7-7700K 1,25 1,248 4894
Core i7-7700K 1,3 ≤ 1,312 4923
Core i7-7700K 1,35 1,36 4953
Core i7-7700K 1,4 1,408 5004

Схема работы ОЗУ была определена разделом выше, остаётся вопрос кольцевой шины. Установить схему полностью симметрично с множителем ЦП нельзя, реальный множитель оказывается на три пункта ниже. Несколько возможных вариантов конфигурации системы показали такие результаты:

100x40=4000 (МГц)

100x43=4300 (МГц)

100x46=4600 (МГц)

Лучше всего виден прирост скорости работы по показателям кэша L3, но и в латентности памяти можно заметить отклик от оверклокинга. Потому, как и принято, будем в работе Uncore использовать практику «минус три» пункта от множителя ЦП. В качестве наиболее сложного теста из нашей программы снова использовался x265 HD Benchmark 2.1.0.4.

Необходимым и достаточным напряжением для частоты 4,9 ГГц стали 1,344 вольт. Нескальпированный CPU в случае с wPrime грелся не больше, чем 79 °С, для других, более тяжёлых утилит, очевиден эдакий «запас», до активации троттлинга в ходе наших замеров быстродействия дело не доходило.

Чтобы стабилизировать работу памяти со схемой 3733 МГц вместе c 17-18-18-39-2T, потребовалось выбрать для переменной DRAM Voltage 1,45 В. Однако здесь более интересна второстепенная переменная tCWL (CAS Write Latency). Рост вспомогательных напряжений каким-то образом её менял, вводя систему в состояние невозможности прохождения POST. Потому вместе с CPU IO Voltage (1,15 В) и SA Voltage (1,1 В), я фиксировал «16» в качестве постоянного значения.

Фактические уровни этих напряжений были больше — так отреагировала на установки материнская плата.

Разгон Core i5-6600K

Пожалуй, этот «четырёхядерник» можно назвать последним из числа активно покупающихся энтузиастами, потому как владельцев Core i5-7600K найти уже действительно тяжело. Разгонный потенциал ЦП серьёзно отличался от образца к образцу, превращая приобретение в настоящую лотерею. У нас участником оказался инженерный экземпляр с батчем L512C501, который тоже не скальпировался.

Работа в стоке и с разгоном при участии разной оперативной памяти уже нами рассматривалась, об этом упоминалось во вступлении. Сконцентрируемся на режиме работы именно в этот раз. В бездейственном состоянии частота равна 803,7 МГц при напряжении 0,88 В.

Из-за завышенной BCLK, частота с однопоточной нагрузкой слегка превысит 3,9 ГГц, напряжение будет доходить до 1,312 В.

Равно как и с Core i7-7700K, плата вмешивается в естественный ход вещей и меняет формулу работы CPU при использовании четырёх потоков — величина будет такой же, как с одним потоком. Напряжение вырастет до 1,344 В.

Методика экспресс-разгона останется неизменной: будем использовать утилиту ASUS TurboV Core, стартовой частотой выставим 4300 МГц. Профиль LLC такой же, как и разделом выше.

Выбранный Level 5 обеспечит лёгкое превышение уровня напряжения относительно установленной отметки. О нагреве процессора при нагрузке посредством wPrime также можно судить по сделанным скриншотам.

Удалось получить следующие результаты:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-6600K 1,25 1,264 4618
Core i5-6600K 1,3 1,312 4659
Core i5-6600K 1,35 1,36 4761
Core i5-6600K 1,4 1,408 4788

Для полной картины, здесь тоже проведём анализ эффекта от повышения частоты кольцевой шины.

100x38=3800 (МГц)

100x41=4100 (МГц)

100x44=4400 (МГц)

100x47=4700 (МГц)

Оказалось, на используемой материнской плате можно установить множитель Uncore идентично с выбранным для процессора. Как показал быстрый анализ быстродействия, организованный при содействии AIDA64, прок есть даже от самого крайнего значения. Дополнительных усилий по стабилизации системы с ним не требуется, потому для тестов мы остановились на частоте 4700 МГц. Как и прежде, самой требовательной утилитой к подбору переменных при оверклокинге стал x265 HD Benchmark (2.1.0.4).

Испытания в ходе работы ЦП на частоте 4,7 ГГц вместе с разогнанными Uncore и DRAM помогли выяснить необходимый и достаточный уровень процессорного напряжения — 1,344 В. Нагрев CPU при использовании wPrime совершенно скромный, картина же происходящего при запуске LinX и других тяжёлых сценариев для системы будет, конечно, совсем иной. Но для наших запланированных тестов скальпирование мало в чём бы помогло, равно как и привлечение СЖО.

Схема работы памяти не менялась — 3733 МГц при конфигурации задержек 17-18-18-39-2T. Напряжение на модулях устанавливалось равным 1,45 В, CPU IO и SA выставлялись на уровень 1,1 В. Всё так же нужно было фиксировать tCWL на отметке 16.

В реальности все эти напряжения слегка превышали определённый для них уровень.

Тестовые приложения

В качестве тестов использовались следующие приложения:

  • AIDA64 5.95.4531 и 5.95.4544 (Cache & Memory benchmark, BenchDLL 4.3.770-x64);
  • Super PI 1.5 XS;
  • wPrime 2.10;
  • x265 HD Benchmark (2.1.0.4);
  • MAXON CINEBENCH R15;
  • POV-Ray 3.7.0;
  • LuxMark v3.1;
  • Futuremark 3DMark 13 (2.4.4180 — для LGA2066 и LGA2011-3, 2.4.4264 — для LGA1151);
  • DiRT 3 Complete Edition (1.2.0.0);
  • Hitman: Absolution (1.0.447.0).

Все обновления для ОС, доступные в Центре Обновления Windows, были инсталлированы. Сторонние антивирусные продукты не привлекались, тонкие настройки системы не производились, размер файла подкачки определялся системой самостоятельно.

Результаты тестирования

Реализация двухканальной памяти у процессоров Intel позволяет получить результаты выше, чем у соперника, а четырёхканальная схема была быстрее двухканальной. Анализ латентности ещё интереснее. Самым быстрым оказался четырёхядерный ЦП, опередив шестиядерный, к тому же работающий быстрее него. Ячеистая структура Core i7-7820X продемонстрировала самый худший показатель (среди продуктов Intel), хотя в первых трёх замерах равных такой системе не было.

Скорость расчёта числа Pi непреклонна — чем выше частота, тем быстрее процесс происходит. Потому результаты тут достаточно предсказуемые.

wPrime отлично реагирует на прирост как в числе ядер, так и в количестве потоков. Высокая частота также понадобится. Из-за последнего атрибута процессоры Intel оказываются впереди преследователей из лагеря AMD. Однако в скором будущем есть все основания для их плотного соперничества.

C перекодированием видео дело вновь обстоит лучше у продуктов Intel. На этом тесте мы ещё раз подробно остановимся в конце этого материала. По скорости работы шестнадцать потоков в системе с Core i7-7820X выглядят более чем уверенно.

Весьма любопытная картина получилась в Cinebench. Шесть быстрых ядер без Hyper-Threading у Core i5-8600K нагнали куда более медленные с точки зрения тактовой частоты двенадцать потоков у Core i7-6850K. Очень близко к ним находится соперник в лице разогнанного Ryzen 5 1600.

Рендеринг сцены в POV-Ray значительно лучше проходит на Core i5-8600K, два преследователя из прошлого теста заметно отстали. По сопоставлению выступлений Core i5-6600K и Core i7-7700K можно констатировать не особо большой эффект от наличия SMT, чем и объясняется лидерство i5-8600K, в эту же логическую схему можно включить разность баллов для Ryzen 3 1200 и Ryzen 5 1400.

LuxMark хорошо откликается на производительную систему памяти, потому здесь четыре канала у Core i7-6850K оказались предпочтительнее, чтобы выбороть первое место у всё той же группы преследователей, образовавшейся в табеле Cinebench. Но общий, суммарный балл в тесте заметно уравновесился из-за более чем весомого вклада в него (идентичной) видеоподсистемы наших стендов.

Итоги в Fire Strike стоит разобрать детально. На общий балл серьёзно влияет используемый процессор, так, самый мощный из нынешних тестовых экземпляров ожидаемо оказался на первом месте.

Ровными рядами — в зависимости от типа используемой платформы — выстроились итоги графических замеров. Аутсайдеры — системы с процессорами AM4, а лидеры — все платы с LGA1151.

Сценарий Physics замечательно реагирует на наличие технологии SMT. И всё же шесть реальных ядер стали быстрее, чем восемь «виртуальных», если рассматривать результаты Core i5-8600K и Core i7-7700K. При равных количествах ядер и потоков продукты AMD уступают процессорам Intel, очевидно, сказывается не такая высокая тактовая частота.

DiRT 3 необходим нам для анализа производительности подсистемы памяти. Отказ от кольцевой шины в Core i7-7820X нашёл отклик в результатах, пусть и небольшой. Но на фоне свежих Ryzen он выглядит точно лучше, не говоря уже классические процессоры, где такой тип шины давно не без успехов используется.

Низкие настройки качества при небольшом разрешении — таким способом процессорозависимость игры можно увеличить, хотя бы для анализа. Безапелляционным лидером в этом состязании стал разогнанный Core i5-8600K. Шесть реальных ядер и высокие оверклокерские возможности — вот и весь секрет успеха. Core i7-7820X формально обошёл менее скоростной Core i7-6850K, но, по правде говоря, большее число активных потоков ничем ему в Hitman: Absolution не помогло.

Возросшая нагрузка на видеоподсистему разом уравняла практически всех наших участников тестирования. Хотя и тут Core i5-8600K всё же выделяется, пусть и буквально символически.

Энергопотребление системы

Замеры выполнялись после прохождения всех прочих тестов в «устоявшемся» режиме компьютера при помощи прибора собственной разработки. Для создания нагрузки я выбрал тестовую дисциплину x265 HD Benchmark (2.1.0.4). Производился расчёт среднего значения потребления тестового стенда «от розетки» на протяжении цикла перекодирования, а затем, после завершения теста, ещё минуту замерялся уровень, когда система простаивала.

Разогнанные шесть ядер потребляют больше четырёх, а восемь — больше шести. Это вполне логично. Впрочем, результат потребления шестнадцатипоточного Core i7-7820X способен ошеломить, а потому я решил приготовить ещё один график, чтобы понять, куда же девается такое огромное количество энергии.

На самом деле всё оказалось достаточно прозаично. Все современные процессоры, так или иначе, находятся в одной условной группе эффективности, для контраста можно взглянуть на FX-6100. И всё же лучшим с точки зрения «полезных» растрат энергии стал Core i7-7700K, четыре ядра и SMT — вот его формула успеха. Этот тест был самым сложным с точки зрения подбора параметров разогнанных систем. Наверняка для других утилит картина будет отличаться.

Вывод

Последние годы аудитория энтузиастов была вынуждена следить за процессорами Intel, потому как развитие сектора, так или иначе, происходило именно силами их специалистов. А вот насколько успешно это было — мы оставим за скобками, поскольку каждый имеет собственное определение для этого понятия. В этом обзоре мы остановились на функционировании систем исключительно в режимах оверклокинга, хотя разработчики немало усилий потратили на энергоэффективность и развитие технологий ускорения — Turbo Boost насчитывает вот уже три поколения, плодом этих разработок мы пренебрегли. Каждый энтузиаст волен в свой способ настроить свою систему, пожелав (или нет) использовать сложную схему прибавки частоты, зависимой от: температуры, теплопакета процессора, степени нагрузки на систему. Также можно совершенно свободно подходить и к способам формирования напряжения на процессоре. При массированном разгоне большинство этих технологий затмеваются, поскольку те направлены скорее на поиск максимальной эффективности вычислений, а не предельную вычислительную мощность.

Скальпировать или нет? Использовать кулеры, готовые СЖО или собирать весь контур самому? Всё это также зависит от личных предпочтений владельца и будущих сценариев эксплуатации компьютера. Для ряда тестов из нашего списка наличие СЖО мало в чём пригодилось, равно как и скальпирование. Младшие (из нынешних) моделей CPU работают без надвигающегося перегрева под хорошим воздушным кулером даже в условиях их предельного разгона.

Компания AMD безусловно расшевелила процессорный рынок, точнее, позволила всем нам вспомнить про времена, когда конкуренция была жива. На сегодняшний день CPU от Intel всё ещё быстрее, и именно по этим причинам продукты AMD имеют более привлекательную стоимость. Всё может вскоре измениться, ведь уже на апрель оба лагеря готовятся презентовать новые продукты. У AMD это будут более быстрые процессоры, а ряд PCH начального уровня от Intel запустит продажи более доступных системных плат, тем самым сборка шестиядерного ПК будет стоить ещё дешевле.

Надеемся, после ознакомления с нашими материалами читатели смогут правильно сориентироваться в текущем положении дел на рынке.

www.overclockers.ua

Большое тестирование процессоров Core i7: всех их вместе соберем

Это уже третье наше тестирование процессоров, относящихся к семейству Broadwell-E. К сожалению, предыдущие две серии экспериментов не позволили получить сколь-нибудь обнадёживающие данные. В результате опытов по выявлению нераскрытого частотного потенциала мы неизменно приходили к выводу о том, что процессоры Haswell-E разгоняются несколько лучше новинок. Однако до сих пор мы проверяли исключительно многоядерные модели. А раз так, может быть, шестиядерники нас порадуют больше?

С позиций теории разгона между Core i7-6850K и Core i7-6800K и процессорами того же семейства с большим количеством ядер нет никаких различий. Как и у старших собратьев, у LGA2011-v3-шестиядерников не заблокированы никакие множители, а кроме того, они обладают всеми новыми свойствами Broadwell-E: они позволяют независимо назначать разные коэффициенты умножения для разных ядер, а также располагают чрезвычайно полезной функцией – замедлением частоты при исполнении AVX-инструкций.

На практике же — а эксперименты мы проводим с высокоэффективным двухбашенным кулером Noctua NH-D15, — с разгоном получилось вот что. Максимальной частотой, на которой способен работать младший процессор Core i7-6800K, оказалась 4,0 ГГц. Достижение стабильности при прохождении тестирования в LinX 0.6.8 (на основе пакета Linpack 11.3.3.010 с поддержкой AVX2) в таком состоянии потребовало повышения напряжения питания до 1,275 В. И при ресурсоёмкой многопоточной нагрузке это – потолок. Несмотря на то, что в качестве внутреннего термоинтерфейса в процессорах Broadwell-E используется индиевый припой, температуры вычислительных ядер на частоте 4,0 ГГц достигали уже 92 градусов.

Развить этот разгон повышением частоты в не-AVX-режимах не особенно удаётся. При установленном уровне напряжения к частоте можно добавить лишь ещё 100 МГц, а при выборе 4,2 ГГц стабильность уже теряется. Наращивать же Vcore выше 1,275 В невозможно по другой причине: это чревато перегревом в приложениях, активно задействующих AVX-инструкции. Иными словами, разогнать наш экземпляр Core i7-6800K удалось лишь до 4,0-4,1 ГГц, что хуже результатов, которые мы получали в оверклокерских экспериментах над шестиядерными Haswell-E.

Второй исследуемый процессор, Core i7-6850K, оказался более податлив в частотном плане. Он смог пройти тестирование в LinX 0.6.8 на частоте 4,1 ГГц, стабильность при которой достигалась установкой напряжения 1,25 В.

Как видно по скриншоту, максимальная температура в тесте стабильности достигает 97 градусов, однако до троттлинга или перегрева дело не доходит.

Аналогично предыдущему случаю к полученной частоте 4,1 ГГц можно добавить ещё 100 МГц тогда, когда процессору не приходится исполнять AVX-инструкции. Таким образом, итоговым разгоном доставшегося нам экземпляра Core i7-6850K можно считать частоту 4,1-4,2 ГГц. Любопытно, что максимально достижимые для этого процессора частоты оказались немного выше, чем у образца Core i7-6800K, несмотря на то, что в номинальном режиме он использует более высокое напряжение Vcore.

Стоит упомянуть, что в других обзорах шестиядерных процессоров Broadwell-E, которые можно найти на просторах глобальной сети, встречаются упоминания о том, что разгоняются они несколько дальше достигнутых нами пределов. Однако дело тут вовсе не в нашей криворукости или в неудачности доставшихся нам экземпляров, а в методике тестирования стабильности. Применяемая нами утилита LinX 0.6.8 – это очень качественный и очень требовательный инструмент контроля, активно использующий AVX-команды. Если же проверять надёжность функционирования в более привычных для массовых пользователей программах, то в разгоне действительно можно получать заметно более высокие результаты.

Учитывая это, мы решили проверить оверклокерский потенциал Core i7-6850K, используя иной подход. Сначала найти его предельную частоту, при которой он сохраняет способность к стабильному функционированию в приложениях, не использующих AVX-инструкции, а потом подобрать к этому режиму необходимую отрицательную корректировку множителя, которая бы позволила без проблем работать и с задачами, где используются векторные команды. Да, в этом случае мы получим снижение производительности в отдельных ресурсоёмких приложениях, алгоритмы которых опираются на AVX-расширения, но вдруг оно окажется не столь заметным и с ним можно будет смириться?

Например, если выбрать для Core i7-6850K напряжение питания 1,4 В, то он способен пройти тестирование на стабильность в не использующей AVX-расширения версии утилиты LinX 0.6.4 при частоте вплоть до 4,3 ГГц.

Пока векторные инструкции не идут в ход, тепловой режим не вызывает никаких вопросов. Зафиксированный во время этого теста максимум температуры – 77 градусов. Хотя это и недвусмысленно намекает, что напряжение можно поднять ещё сильнее, мы решили не выжимать из тестового образца все соки. Дело в том, что долговременно использовать для Broadwell-E напряжения свыше 1,4 В настоятельно не рекомендуется во избежание деградации. Всё-таки в его основе лежит достаточно капризный 14-нм полупроводниковый кристалл.

К тому же, чтобы при целевом напряжении 1,4 В процессор не перегревался в LinX 0.6.8, его частоту приходится очень сильно снижать. Например, с таким уровнем напряжения тестирование стабильности нашего экземпляра Core i7-6850K в LinX 0.6.8 удалось провести лишь при установке параметра AVX Instruction Core Negative Offset в 13х, то есть при сбросе частоты CPU в случае исполнения AVX-инструкций до 3,0 ГГц. И такой режим работы вряд ли можно считать приемлемым, поскольку итоговая производительность процессора в разгоне в некоторых приложениях окажется ниже быстродействия в номинальном режиме.

Однако есть хитрость, которая позволяет избежать необходимости сбавлять частоту разогнанного процессора при работе процессорных AVX-блоков столь радикально. Напряжение Vcore следует задавать не в ручном (Manual Mode), а в адаптивном (Adaptive Mode) режиме. Если целевые 1,4 В обозначить как максимальное напряжение в турборежиме (Additional Turbo Mode CPU Core Voltage), то сброс множителя при исполнении AVX-инструкций будет автоматически сопровождаться и уменьшением напряжения питания процессора.

В результате для нашего Core i7-6850K это позволило ограничиться снижением частоты при задействовании AVX-команд лишь до 4,0 ГГц.

В итоге получился даже более интересный, чем при подходе «в лоб», вариант разгона Core i7-6850K до 4,0/4,3 ГГц. И именно его мы использовали при тестировании производительности. Поэтому на следующих далее диаграммах вы увидите показатели быстродействия не только в штатном режиме, но и при описанном выше гибридном оверклокерском подходе. В целом же нужно признать, что, хотя частотный потенциал шестиядерных Broadwell-E и оказался несколько хуже, чем у Haswell-E, введённые Intel в оверклокерский инструментарий дополнительные опции позволяют добиться при разгоне интересных практических результатов.

⇡#Описание тестовых систем и методики тестирования

Для тестирования младших LGA2011-v3-процессоров нового поколения мы собрали очень представительную компанию соперников. Основная цель исследования – сравнить производительность шестиядерных Core i7-6850K и Core i7-6800K семейства Broadwell-E с быстродействием четырёхъядерного Skylake в лице Core i7-6700K, но для такого сравнения не помешает хорошо проработанный фон. И таким фоном выступил полный набор процессоров LGA2011-v3 поколений Haswell-E и Broadwell-E. Иными словами, для обзора мы собрали все сколько-нибудь актуальные на сегодняшний день оверклокерские процессоры семейства Core i7.

В итоге в составе тестовых конфигураций принимали участие комплектующие из следующего набора:

  • Процессоры:
    • Intel Core i7-6950X Extreme Edition (Broadwell-E, 10 ядер + HT, 3,0-4,0 ГГц, 25 Мбайт L3);
    • Intel Core i7-6900K (Broadwell-E, 8 ядер + HT, 3,2-4,0 ГГц, 20 Мбайт L3);
    • Intel Core i7-6850K (Broadwell-E, 6 ядер + HT, 3,6-4,0 ГГц, 15 Мбайт L3);
    • Intel Core i7-6800K (Broadwell-E, 6 ядер + HT, 3,4-3,8 ГГц, 15 Мбайт L3);
    • Intel Core i7-6700K (Skylake, 4 ядра + HT, 4,0-4,2 ГГц, 8 Мбайт L3);
    • Intel Core i7-5960X Extreme Edition (Haswell-E, 8 ядер + HT, 3,0-3,5 ГГц, 20 Мбайт L3);
    • Intel Core i7-5930K (Haswell-E, 6 ядер + HT, 3,5-3,7 ГГц, 15 Мбайт L3);
    • Intel Core i7-5820K (Haswell-E, 6 ядер + HT, 3,3-3,6 ГГц, 15 Мбайт L3).
  • Процессорный кулер: Noctua NH-D15.
  • Материнские платы:
    • ASUS X99-Deluxe (LGA2011-v3, Intel X99);
    • ASUS Maximus VIII Ranger (LGA1151, Intel Z170).
  • Память: 4 × 8 Гбайт DDR4-3000 SDRAM, 16-16-16-36 (2 × Patriot Viper 4 PV416G300C6K).
  • Видеокарта: NVIDIA GeForce GTX 1080 (8 Гбайт/256-бит GDDR5X, 1607-1733/10000 МГц).
  • Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G);
  • Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Важным изменением в нашей тестовой платформе стал переход на использование более новой и производительной графической карты NVIDIA GeForce GTX 1080. Это дало возможность отказаться от игровых тестов в сниженных разрешениях – масштабируемость при изменении мощности CPU теперь явно прослеживается и с высоким качеством картинки в Full HD.

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10586 с использованием следующего комплекта драйверов:

  • Intel Chipset Driver 10.1.2.19;
  • Intel Management Engine Interface Driver 11.0.0.1172;
  • Intel Turbo Boost Max Driver Beta Version 1.0.0.1025;
  • NVIDIA GeForce 368.39 Driver.

Ключевые модели процессоров из приведённого выше списка испытывались дважды – не только при работе в номинальном режиме, но и при их стабильном и подходящем для долговременного использования разгоне, который достижим с применяемым нами охлаждением:

  • шестиядерный Broadwell-E в разгоне представлен процессором Core i7-6850K, работающим на частоте 4,0/4,3 ГГц с напряжением 1,4 В;
  • шестиядерный Haswell-E в разгоне представлен процессором Core i7-5930K, работающим на частоте 4,2 ГГц при напряжении 1,275 В;
  • разогнанный четырёхъядерный Skylake представлен процессором Core i7-6700K, работающим на частоте 4,7 ГГц при напряжении 1,46 В.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Бенчмарки:

  • BAPCo SYSmark 2014 ver 1.5 – тестирование в сценариях Office Productivity (офисная работа: подготовка текстов, обработка электронных таблиц, работа с электронной почтой и посещение интернет-сайтов), Media Creation (работа над мультимедийным контентом — создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео) и Data/Financial Analysis (статистический анализ и прогнозирование инвестиций на основе некой финансовой модели).
  • Futuremark 3DMark Professional Edition 2.0.2067 — тестирование в сценах Sky Diver 1.0, Cloud Gate 1.1 и Fire Strike 1.1.

Приложения:

  • Adobe After Effects CC 2015 — тестирование скорости рендеринга методом трассировки лучей. Измеряется время, затрачиваемое системой на обсчёт в разрешении 1920 × [email protected] заранее подготовленного видеоролика.
  • Adobe Photoshop CC 2015 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
  • Adobe Photoshop Lightroom 6.4 – тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.
  • Adobe Premiere Pro CC 2014 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.
  • Autodesk 3ds max 2016 — тестирование скорости финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920 × 1080 с применением рендерера mental ray стандартной сцены Hummer.
  • Blender 2.77a – тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели из Blender Cycles Benchmark rev4.
  • Microsoft Edge 20.10240.16384.0 – тестирование производительности при работе интернет-приложений, построенных с использованием современных технологий. Применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.
  • WinRAR 5.31 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
  • x264 r2692 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный [email protected] AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • x265 1.9+140 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется тот же видеофайл, что и в тесте скорости транскодирования кодером x264.

Игры:

  • Ashes of Singularity. Разрешение 1920 × 1080, DirectX 11, Quality Profile = High, MSAA=2x.
  • Company of Heroes 2. Настройки для разрешения 1280 × 800: Maximum Image Quality, Anti-Aliasing = Off, Higher Texture Detail, High Snow Detail, Physics = Off. Настройки для разрешения 1920 × 1080: Maximum Image Quality, High Anti-Aliasing, Higher Texture Detail, High Snow Detail, Physics = High.
  • Grand Theft Auto V. Разрешение 1920 × 1080, DirectX Version = DirectX 11, FXAA = Off, MSAA = x4, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum.
  • Hitman™. Разрешение 1920 × 1080, DirectX 12, Super Sampling = 1.0, Level of Detail = Ultra, Anti-Aliasing = FXAA, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = On, Shadow Maps = Ultra, Shadow Resolution = High.
  • Rise of the Tomb Raider. Разрешение 1920 × 1080, DirectX 11, Anti-aliasing = SSAA 4x, Preset = Very High.
  • Thief. Разрешение 1920 × 1080, Texture Quality = Very High, Shadow Quality = Very High, Depth-of-field Quality = High, Texture Filtering Quality = 8x Anisotropic, SSAA = High, Screenspace Reflections = On, Parallax Occlusion Mapping = On, FXAA = On, Contact Hardening Shadows = On, Tessellation = On, Image-based Reflection = On.
  • Total War: Attila. Разрешение 1920 × 1080, Maximum Quality.
  • Tom Clancy’s The Division. Разрешение 1920 × 1080, Graphics Quality = High.

Важно отметить, что тестирование процессоров Intel Core i7-6950X, Core i7-6900K, Core i7-6850K и Core i7-6800K выполнялось с активированной технологией Turbo Boost Max 3.0.

⇡#Производительность в комплексных тестах

Комплексные тесты наподобие SYSmark 2014 позволяют делать выводы о производительности той или иной платформы в целом, при исполнении типовых пользовательских сценариев работы с различными массовыми приложениями. И полученные результаты совершенно не удивляют. Коль скоро большинство программ, с которыми сталкиваются пользователи в повседневной работе, до сих пор не имеет глубокой оптимизации под многопоточность, новые многоядерные процессоры Broadwell-E в сравнении с четырёхъядерным Skylake не могут предложить никакой принципиально лучшей производительности. И более того, если говорить о быстродействии главных героев этого материала – шестиядерных Core i7-6850K и Core i7-6800K, то их интегральные показатели производительности даже ниже, чем у четырёхъядерного процессора Core i7-6700K для платформы LGA1151. А это значит, что и младшие процессоры для платформы LGA2011-v3 стоит расценивать ровно так же, как и их старших собратьев, то есть как нишевые предложения, хорошо подходящие лишь для решения каких-то конкретных задач, для которых многоядерность важнее высокой тактовой частоты.

Развёрнутые результаты SYSmark 2014 дают недвусмысленный намёк, что это за задачи. Обратите внимание: преимущество Core i7-6700K перед шестиядерными Broadwell-E прослеживается лишь в сценариях Office Productivity и Data/Financial Analysis, в то время как в сценарии Media Creation процессоры Core i7-6850K и Core i7-6800K выступают лучше флагманского Skylake. То есть потенциал платформы LGA2011-v3 в её современном виде способен раскрыться при обработке и создании цифрового контента: в этом случае к месту будет и большое число вычислительных ядер, и вместительный кеш, и скоростная четырёхканальная память.

Стоит заметить, что новинки способны предложить некий прирост производительности по сравнению со своими предшественниками семейства Haswell-E. Так, превосходство Core i7-6850K над Core i7-5930K составляет порядка 7-8 процентов, а Core i7-6800K быстрее, чем Core i7-5820K, на 6 процентов. Конечно, это вряд ли можно назвать принципиальной прибавкой в скорости, однако на большее мы и не рассчитывали: в конце концов, микроархитектура Broadwell мало отличается от Haswell, а разница в тактовых частотах похожих по позиционированию шестиядерников разных поколений не превышает 100 МГц.

В 3DMark картина несколько иная. Хотя этот бенчмарк и позиционируется в качестве средства оценки игровой производительности, он, в отличие от большинства игр, качественно оптимизирован под многопоточность. Поэтому многоядерные процессоры смотрятся в нём более выигрышно. Однако результаты в наиболее сложном в графическом плане подтесте Fire Strike несколько выбиваются из общей картины, указывая на то, что Core i7-6700K при игровой нагрузке может превосходить шестиядерные процессоры Broadwell-E. Это значит, что выбор платформы LGA2011-v3 для игровой сборки может оказаться несколько спорным решением.

Как оно будет в реальных играх, мы посмотрим несколько позже, а здесь же просто заметим, что преимущество Broadwell-E перед Haswell-E выглядит не слишком убедительно. Оно составляет единицы процентов и явно уступает относительной разнице в стоимости похожих по характеристикам шестиядерников разных поколений. Иными словами, если опираться на результаты 3DMark, то Core i7-6850K и Core i7-6800K можно назвать несколько переоценёнными чипами.

Впрочем, как уже было сказано выше, применять LGA2011-v3-процессоры рациональнее не для игр, а для создания цифрового контента. Именно в этом случае они раскрывают весь заложенный потенциал. И как это выглядит в реальности, мы увидим дальше.

⇡#Производительность в приложениях

Именно для решения тяжёлых в вычислительном плане проблем и стоит использовать процессоры с большим количеством ядер. Шестиядерные Broadwell-E способны обеспечить более высокое, нежели Core i7-6700K, быстродействие в большинстве наших тестовых задач: при финальном рендеринге, монтаже и перекодировании видео, сжатии данных и в других случаях. Причём в наиболее вопиющих случаях, например в 3ds max и Blender, шестиядерникам Core i7-6850K и Core i7-6800K уступает даже разогнанный до 4,7 ГГц Skylake. Это явно указывает на то, что, если ваша деятельность связана с созданием контента, шестиядерные процессоры предпочтительнее четырёхъядерных. В целом в ресурсоёмких приложениях, поддерживающих многопоточность, шестиядерники поколения Broadwell-E могут предложить примерно 10-15-процентное преимущество в скорости работы.

Впрочем, говоря о достоинствах многоядерных процессоров, не следует забывать о существовании в ассортименте компании Intel десктопных CPU, располагающих восемью или десятью вычислительными ядрами. Для работы над цифровым контентом они подходят ещё лучше, а Core i7-6850K и Core i7-6800K на самом деле предлагают лишь некий компромисс между многоядерностью и ценой.

Есть и ещё пара поводов для расстройства: цена и темп роста быстродействия по сравнению с процессорами прошлого поколения. В то время как младший шестиядерный Haswell-E был всего лишь на 15 процентов дороже старшего четырёхъядерного Haswell или Skylake, с приходом поколения Broadwell-E разница в цене выросла до 28 процентов. При этом производительность Core i7-6800K и Core i7-5820K различается не столь заметно. В тех приложениях, где применять шестиядерники действительно имеет смысл, разрыв в их быстродействии не превышает 10 процентов. А если принять во внимание возможность эксплуатации CPU на частотах, превышающих номинальные, то представитель семейства Haswell-E и вовсе может оказаться привлекательнее, так как он способен работать с AVX-инструкциями при заметно более высокой частоте, чем Broadwell-E.

⇡#Игровая производительность

До недавних пор производительность платформ, оснащенных современными процессорами, в подавляющем большинстве актуальных игр определялась возможностями графической подсистемы. Однако произошедший за несколько последних лет бурный рост производительности игровых видеокарт привёл к тому, что теперь нередко производительность стала ограничиваться не столько видеокартой, сколько центральным процессором. И если раньше, чтобы понять геймерский потенциал того или иного CPU, нам приходилось использовать уменьшенные разрешения, то с современными видеокартами это делать совсем не обязательно.

Для комплектации нашей процессорной тестовой системы компания NVIDIA предоставила нам свой новейший ускоритель GeForce GTX 1080, который благодаря беспрецедентно высокой мощности хорошо подходит и для 4K-разрешений, и для виртуальной реальности, а уж для FullHD – и подавно. В результате мы смогли отказаться от игровых тестов в разрешении 1280 × 800, которые нередко не встречали понимания у наших читателей. Теперь зависимость частоты кадров от мощности CPU отлично можно проследить в абсолютно реальных, а не искусственно созданных условиях: в FullHD-разрешении 1920 × 1080 и с максимальными настройками качества изображения. Этот подход мы и взяли на вооружение.

Ситуация с игровой производительностью шестиядерных процессоров Broadwell-E оказывается несколько неожиданной. С одной стороны, они позволяют получить более высокую частоту кадров по сравнению с предшественниками поколения Haswell-E. Причём речь тут идёт не только о преимуществе перед шестиядерными Core i7-5820K и Core i7-5930K, но и о превосходстве над прошлым флагманом Core i7-5960X с восемью ядрами. Однако, с другой стороны, платформа LGA2011-v3 всё равно остаётся слишком тяжеловесной и неповоротливой: вне зависимости от того, какой в ней используется процессор, система на базе флагманского четырёхъядерного LGA1151-процессора Core i7-6700K поколения Skylake в играх работает быстрее.

И это нисколько не удивительно. Главная причина такого результата заключается в том, что игры очень редко оптимизируются под процессоры с большим числом вычислительных ядер. Для них важнее высокая частота и большая удельная производительность на такт, что и может предложить Skylake – Core i7-6700K. Кроме того, конфигурация на базе LGA1151 проще по своей структуре, поэтому определённый вклад в превосходство этой платформы вносят и более низкие латентности подсистемы памяти и шины PCI Express. В итоге основывать на Core i7-6850K или Core i7-6800K какие-либо игровые сборки смысл имеет лишь в том случае, если речь идёт о системе с несколькими высокопроизводительными GPU, которые смогут извлечь выигрыш из большего числа линий PCI Express.

Дополнительно усугубляет ситуацию и разгонный потенциал. В то время как для шестиядерников поколения Broadwell-E предельной частотой оказалась величина 4,3 ГГц (снижающаяся до 4,0 ГГц при включении AVX-блоков), Skylake свободно разгоняется до 4,7 ГГц, чем дополнительно закрепляет своё преимущество.

Впрочем, нужно иметь в виду, что все приведённые тезисы верны лишь в смысле относительной игровой производительности. Если же вести речь об абсолютных показателях частоты кадров, то нужно понимать, что любой из актуальных процессоров семейства Core i7 абсолютно достаточен для того, чтобы раскрыть потенциал видеокарты верхнего уровня. Иными словами, несмотря на то, что на диаграммах Core i7-6850K и Core i7-6800K находятся ниже Core i7-6700K, конфигурация на базе любого из этих CPU сможет справиться с любой современной игрой AAA-класса без каких-либо вопросов.

⇡#Энергопотребление

Все процессоры Broadwell-E имеют одинаковый тепловой пакет 140 Вт, и шестиядерники в этом отношении ничем не отличаются от своих собратьев. Это вполне закономерно, ведь любые Broadwell-E основываются на одном и том же 14-нм полупроводниковом кристалле, а тактовые частоты процессоров с меньшим числом ядер выше, чем у старших представителей линейки. В то же время расчётное тепловыделение представителя семейства Skylake, Core i7-6700K, на 35 процентов ниже. Неужели показатели реального энергопотребления (а следовательно, и тепловыделения) различаются столь кардинально и платформа LGA2011-v3 не может быть экономичной ни при каких условиях?

Проверим. Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет измерять потребляемую и выдаваемую электрическую мощность, чем мы и воспользуемся для практических измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся у процессоров энергосберегающие технологии.

И действительно, в состоянии простоя платформа LGA2011-v3 потребляет почти в два раза больше, чем LGA1151. Причин этому сразу несколько. Во-первых, набор системной логики Intel X99 более прожорлив, чем Z170. Во-вторых, LGA2011-v3-процессоры лишены поддержки части энергосберегающих технологий, например состояния C7. В-третьих, материнские платы с процессорным разъёмом LGA2011-v3 имеют заведомо более сложный дизайн и оснащены большим числом контроллеров. Обратить внимание стоит и ещё на один момент: при бездействии Haswell-E немного экономичнее более новых Broadwell-E.

При многопоточной нагрузке Core i7-6850K и Core i7-6800K оказываются самыми экономичными процессорами для платформы LGA2011-v3. Однако до Core i7-6700K им далеко: потребление системы на его основе примерно на 20 процентов ниже. Конечно, у четырёхъядерника меньше и производительность, однако если оперировать её удельными значениями в пересчёте на ватт, то окажется, что по эффективности Skylake всё же выигрывает.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.8 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.

Примерно такая же картина, как с потреблением при финальном рендеринге, наблюдается и здесь. На фоне остальных LGA2011-v3-процессоров Core i7-6850K и Core i7-6800K выделяются достаточно скоромными энергетическими аппетитами. Очевидно, что перевод производства таких процессоров на 14-нм техпроцесс положительно сказался на их экономичности. Однако флагманский Skylake тем не менее позволяет собирать ещё более экономичные системы, что совершенно неудивительно, если принять во внимание меньшее количество вычислительных ядер. Всё это значит, что если вы решитесь собирать систему на платформе LGA2011-v3, то не забудьте морально подготовиться не только к высоким стартовым затратам на комплектующие, но и к большим эксплуатационным расходам.

⇡#Выводы

Наша лаборатория последовательно рассмотрела все новые LGA2011-v3 процессоры семейства Broadwell-E, которые компания Intel вывела на рынок полтора месяца тому назад. И настоящий материал – это третий и последний «подход к снаряду». Однако сегодняшние впечатления о выбранном объекте рассмотрения – шестиядерных процессорах Core i7-6850K и Core i7-6800K – получились совсем не такими, как раньше. По итогам прошлых тестирований, где речь шла о десятиядерных или восьмиядерных новинках, мы говорили, что Broadwell-E – это хоть и дорогие, но достаточно интересные процессоры. В определённых применениях, например в высокопроизводительных рабочих станциях для обработки и создания цифрового контента они могут оказаться более чем уместны. Да, массив из восьми или десяти вычислительных ядер – достаточно специфичная вещь, но в целом ряде ресурсоёмких приложений от него и вправду есть немалый толк. Поэтому обеспеченные пользователи, которые работают в многопоточных средах, могут найти веские причины для приобретения флагманских LGA2011-v3-процессоров нового поколения, ведь такие чипы по сравнению со старшими представителями семейства Skylake, максимальное количество ядер у которых – четыре, действительно заметно мощнее.

С двумя же младшими моделями в линейке Broadwell-E ситуация совсем иная. Отставание шестиядерников Core i7-6850K и Core i7-6800K от родственных процессоров с большим числом ядер очень заметно: в наиболее тяжёлых задачах оно может доходить до 35-50 процентов. При этом их преимущество перед четырёхъядерным Core i7-6700K даже в самом благоприятном случае не превышает 10-15 процентов, так как более прогрессивная микроархитектура и более высокие тактовые частоты старшего Skylake успешно компенсируют в полтора раза меньшее число вычислительных ядер. А если принять во внимание и более высокий разгонный потенциал процессоров семейства Skylake, то разница в быстродействии Core i7-6700K и Core i7-6850K/6800K окажется ещё меньше.

Само по себе это не так страшно, но Intel проигнорировала реальное положение вещей и установила на новые шестиядерники явно завышенные цены. Даже самый дешёвый Core i7-6800K оказался  на 28 процентовдороже, чем Core i7-6700K, не говоря уже о гораздо более дорогостоящем Core i7-6850K. В итоге соотношение между ценой и производительностью у младших Broadwell-E получилось не совсем разумным. К тому же не следует забывать и о существовании огромного пласта приложений, где Core i7-6850K и Core i7-6800K оказываются даже медленнее, чем Core i7-6700K, и существенная часть этого пласта – 3D-игры. В сумме всё это делает шестиядерные Broadwell-E откровенно компромиссными предложениями, не способными попасть ни в сферу интересов энтузиастов высокой производительности, ни в число вариантов, привлекательных для геймеров.

Иными словами, в отличие от Core i7-6950X и Core i7-6900K, мы склонны считать новые Core i7-6850K и Core i7-6800K не слишком удачными предложениями, плохо вписывающимися в существующий модельный ряд интеловских чипов. Не могут они претендовать и на роль относительно недорогого входного билета в экосистему LGA2011-v3. Её прекрасно исполнял и продолжит исполнять процессор Core i7-5820K поколения Haswell-E, который на целых $45 дешевле Core i7-6800K. И пусть в номинальном режиме он немного медленнее шестиядерников поколения Broadwell-E, эту разницу в большинстве случаев можно компенсировать с помощью разгона, который у процессоров Haswell-E выполнятся и проще, и в целом результативнее.

Процессоры для тестирования предоставлены компанией «Регард».

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Разгон и сравнение процессоров. Часть II: решения от Intel — Skylake-X, Broadwell-E, Coffee Lake-S, Kaby Lake-S и Skylake-S

Компания Intel более 10 лет чувствовала себя вольготно на процессорном рынке, пока AMD не представила решения на базе микроархитектуры Zen. Последние оказались достаточно производительными, что заставило чипмейкера корректировать свои планы, дабы составить конкуренцию многоядерным продуктам оппонента. Количество ядер для HEDT-платформы было доведено до 18 в самой старшей модели Core i9, что при наличии технологии Hyper-Threading позволило обрабатывать 36 потоков за раз, в то время как AMD Ryzen Threadripper — максимум 32. Для новинок потребовался очередной сокет — LGA2066, и материнские платы на чипсете X299 с его поддержкой.

Процессор Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Core i7-7740X Core i5-7640X
Ядро Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Kaby Lake-X Kaby Lake-X
Разъём LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066
Техпроцесс, нм 14 14 14 14 14 14 14 14 14
Число ядер (потоков) 18 (36) 16 (32) 14 (28) 12 (24) 10 (20) 8 (16) 6 (12) 4 (8) 4
Номинальная частота, ГГц 2,6 2,8 3,1 2,9 3,3 3,6 3,5 4,3 4
Частота Turbo Boost, ГГц 4,2 4,2 4,3 4,3 4,3 4,3 4,0 4,5 4,2
Частота Turbo Boost Max, ГГц 4,4 4,4 4,4 4,4 4,5 4,5
Разблокированный на повышение множитель + + + + + + + + +
L1-кэш, Кбайт 18 x (32 + 32) 16 x (32 + 32) 14 x (32 + 32) 12 x (32 + 32) 10 x (32 + 32) 8 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 18 x 1024 16 x 1024 14 x 1024 12 x 1024 10 x 1024 8 x 1024 6 x 1024 4 x 256 4 x 256
L3-кэш, Мбайт 24,75 22 19,25 16,5 13,75 11 8,25 8 6
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2666
Каналов памяти 4 4 4 4 4 4 4 2 2
Линий PCI-E 44 44 44 44 44 28 28 16 16
TDP, Вт 165 165 165 140 140 140 140 112 112
Рекомендованная стоимость, $ 1999 1699 1399 1199 999 599 389 350 243

Особняком здесь стоят модели Core i7 и Core i5, обладающие лишь четырьмя ядрами, а младшая даже лишена Hyper-Threading.

Под натиском доступных решений AMD не осталась в стороне и массовая платформа. Модели Core i7 и Core i5 обзавелись шестью ядрами и, соответственно, увеличенным кэшем третьего уровня. Досталось и процессорам Core i3 — они лишились поддержки Hyper-Threading, но при этом способны обрабатывать четыре потока благодаря аналогичному числу физических ядер. Но не обошлось и без ложки дегтя. Несмотря на используемый сокет LGA1151, новинки оказались несовместимы с платами на чипсетах 200 и 100 серий. Для их работы потребовались «материнки» на логике 300 серии. Пока что доступны решения на старшем чипсете Z370, но на днях должны быть представлены и более дешевые хабы — h470, B360 и h410.

Процессор Core i7-8700K Core i7-8700 Core i5-8600K Core i5-8400 Core i3-8350K Core i3-8100
Ядро Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S
Разъём LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14 14
Число ядер (потоков) 6 (12) 6 (12) 6 6 4 4
Номинальная частота, ГГц 3,7 3,2 3,6 2,8 4,0 3,6
Частота Turbo Boost, ГГц 4,7 4,2 4,3 4,0  –
Разблокированный на повышение множитель + + +
L1-кэш, Кбайт 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 6 x 256 6 x 256 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 12 12 9 9 8 6
Графическое ядро UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630
Частота графического ядра, МГц 350–1200 350–1200 350–1150 350–1050 350–1150 350–1100
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2400
Каналов памяти 2 2 2 2 2 2
TDP, Вт 95 65 95 95 91 65
Рекомендованная стоимость, $ 370 312 258 187 179 117

В этом тестировании примут участие знаковые процессоры компании Intel последних лет. Core i5-6600K (Skylake-S) является представителем первой настольной линейки, где появилась поддержка DDR4. В следующем поколении продуктов, откуда мы выбрали Core i7-7700K (Kaby Lake-S), разработчики больше внимания уделили развитию интегрированной графики, но разгонный потенциал самых дорогих моделей оказался повыше. Долгожданные изменения произошли в последнем, восьмом, поколении — число ядер в семействах Core i5 и Core i7 теперь увеличилось до шести, у нас в распоряжении оказался Core i5-8600K (Coffee Lake-S). Сегмент HEDT также сложно обойти вниманием, Core i7-6850K (Broadwell-E) — один из первых ЦП, выпущенных на 14-нм техпроцессе, архитектурные изменения были небольшими, тянущимися корнями к Haswell-E. Core i7-7820X (Skylake-X) представляет концептуально новый подход разработчика: на смену кольцевой шине пришла ячеистая (mesh) структура, а размер кэша L2 оказался увеличен за счёт L3. Будет ли такое архитектурное построение процессоров теперь общепринятым — покажет лишь время. Ниже расположена таблица с их характеристиками.

Процессор Core i7-7820X Core i7-6850K Core i5-8600K Core i7-7700K Core i5-6600K
Ядро Skylake-X Broadwell-E Coffee Lake-S Kaby Lake-S Skylake-S
Разъём LGA2066 LGA2011-3 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14
Число ядер (потоков) 8 (16) 6 (12) 6 (6) 4 (8) 4 (4)
Номинальная частота, ГГц 3,6 3,6 3,6 4,2 3,5
Частота Turbo boost, ГГц 4,3 3,8 4,3 4,5 3,9
L1-кэш, Кбайт 8 x (32+32) 6 x (32+32) 6 x (32+32) 4 x (32+32) 4 x (32+32)
L2-кэш, Кбайт 8 x 1024 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 11 15 9 8 6
Графическое ядро Intel UHD Graphics 630 Intel HD Graphics 630 Intel HD Graphics 530
Частота графического ядра, МГц 350–1150 350–1150 350–1150
Число унифицированных шейдерных процессоров 24 24 24
Поддерживаемая память DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2400DDR3L-1600 DDR4-2133DDR3L-1600
Каналов памяти 4 4 2 2 2
TDP, Вт 140 140 95 91 91

Как и в перовой части текущего цикла статей, где рассматривались представители конкурирующего лагеря, мы будем проводить оверклокинг экземпляров ЦП с выяснением их разгонного потенциала (Core i7-6850K — лишь формально, поскольку это его не первое появление на публике). В завершении будут общие сводные данные по производительности стендов в ряде бенчмарков, а в третьей, завершающей части все системы сойдутся в условиях нагрузок играми.

Допускаю, для полноты картины многим из читателей не будет хватать той или иной модели процессора. Не так давно мы выясняли, как появление поддержки DDR4 оказало влияние на финальное быстродействие Core i5-6600K. Там же приняли участие немало «народных» моделей ЦП. Призываю ознакомиться с теми результатами и мысленно провести корреляцию с итогами этого обзора.

Тестовые стенды для LGA2066 и LGA2011-3

Для систем HEDT были подобраны следующие комплектующие:

  • материнская плата №1: ASUS Prime X299-Deluxe (UEFI 1004);
  • материнская плата №2: ASRock Fatal1ty X99 Professional Gaming i7 (UEFI P1.40);
  • СЖО: be quiet! Silent Loop 280mm;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C14Q-32GTZ (4x8 ГБ, 3200 МГц, 14-14-14-34-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.192);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), Intel Turbo Boost Max Technology 3.0 Driver (1.0.0.1033), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i7-7820X

Мы использовали розничный экземпляр с батчем L716B364:

Процессоры Intel из сегмента HEDT характеризуются поддержкой третьей версии Turbo Boost. Уже на заводе производитель отмечает наиболее «способные» ядра, они будут привлекаться во время лёгких нагрузок на ЦП, когда число активных потоков будет невелико. В то же самое время энтузиастам такой жест от вендора может навредить в случае, когда ядра с лучшим оверкокерским потенциалом окажутся не на первых ролях в такой заведомо расписанной схеме. Кто знает, быть может, в развитии следующего поколения этой технологии инженеры Intel откроют способ для ручной установки подобного приоритета.

В простое частота на ядрах опускается до 1,2 ГГц. Наблюдать за напряжением привычными методами вроде диагностических утилит будет в корне неверно. Для нашей платы оно отображалось как 0,95 В.

Как множитель, так и действующее напряжение для каждого ядра могут быть разным. Однопоточный тест SuperPI «ускоряет» одно из ядер до 4,5 ГГц (у нашего экземпляра оно пятое по счёту), а напряжение всё так же остаётся равным 0,95 В (что, очевидно, идёт вразрез с реалиями). Частота Uncore была на уровне 2,4 ГГц.

И при полной нагрузке на процессор напряжение не увеличилось, оно, якобы, даже слегка уменьшилось и оказалось равно 0,928 В. Ядра функционировали на частоте 4,0 ГГц, блок Uncore — без изменений.

Общий подход к проведению анализа разгонного потенциала подробно изложен в соответствующей части обзора материнской платы ASUS Prime X299-A. Там рассматривался инженерный экземпляр Core i7-7820X, а участник именно этого тестирования по той же схеме подвергался анализу на другом устройстве — MSI X299 SLI Plus. Для подробного знакомства будет правильно изучить оба материала, а я воспользуюсь общим итогом тех наработок.

Итак, известен предельный разгон этого процессора — 4,6 ГГц для нагрузки класса Cinebench R15. Но такую планку он не удержал во время нашего тестирования, наиболее критичным был запуск x265 HD Benchmark. Пришлось откатиться на один пункт, уровень 4,5 ГГц уже придал системе ожидаемую стабильность. Про запуск LinX или каких-либо ещё стресс-тестов речь не идёт.

Подчеркну, здесь производился комплексный разгон: ядер, памяти и блока Uncore. А ещё я не занимался тонкой подстройкой работы каждого из ядер — наверняка кое-где можно было бы надбавить итоговое частотное значение, равно как и не выполнялась подстройка сложной схемы с приоритетностью ядер в зависимости от типа нагрузки. Потому в однопоточных тестах результаты, скорее всего, на несколько процентов могут быть лучше. Впрочем, подавляющее большинство сценариев являются многопоточными, а результаты там — наиболее интересны.

Процессор не скальпировался, а охлаждала его одна из самых эффективных готовых двухсекционных СЖО. Между тем, разница именно в наших тестах по температуре ядер относительно лучших моделей суперкулеров едва превышала один градус (на эту роль я привлекал лабораторный Cryorig R1 Ultimate). Замеры проводились с иным набором памяти, где радиаторы имели меньшую высоту, с ними эффективная частота была поменьше. У модулей класса G.Skill TridentZ на сокете LGA2066 имеется общая проблема совместимости. Узел VRM на протяжении всего времени замеров обдувался непосредственно одним среднескоростным вентилятором с крыльчаткой 140 мм (Cryorig XF140). Такие средства были скорее страховкой, чем насущной необходимостью, про серьёзный нагрев стабилизатора речь не шла.

Разгон Core i7-6850K

Этот участник принимал участие в сравнительных тестах с Ryzen 7, его батч — J618B767.

Занимательные сведения о возможностях семейства этого CPU есть в обзоре десятиядерного Core i7-6950X. Я сконцентрируюсь лишь на поведении нашего испытуемого в рамках этого тестирования. Итак, приоритет ядер в фирменной утилите имеет строго обратный нумерации характер, что весьма любопытно.

Частота в простое равна 1,2 ГГц, напряжение на ядрах 0,8 В (как и с Core i7-7820X, данные скорее справочные).

С однопоточной нагрузкой он ускорялся до 4 ГГц, роста напряжения вновь не отмечается.

Все двенадцать потоков приводили к повышению напряжения до 1,185 В, на ядрах частота равнялась 3,7 ГГц. Кольцевая шина всё время работала на уровне 2800 МГц.

Начальные параметры имели вот такой вид:

В предыдущем сравнительном обзоре, где использовался этот же процессор, был достаточно жёсткий подход к установке верхней частотной отметки, а теперь, придерживаясь идей, изложенных в предыдущей главе, удалось повысить планку до 4,3 ГГц. Память функционировала с формулой 3,2 ГГц, а блок Uncore — на грани 3,3 ГГц (с большей величиной уже возникали сбои в ходе выполнения сценариев).

Общий набор действующих переменных выглядел так:

Материнская плата слегка завышает напряжение на памяти, но в ходе тестовых сценариев оно понижается до близкого к 1,5 В уровню.

Page 2

Системы среднего уровня базировались на таких компонентах:

  • материнская плата №1: ASUS ROG Maximus X Formula (UEFI 0220);
  • материнская плата №2: ASUS ROG Maximus IX Apex (UEFI 0801);
  • кулер: Cryorig R1 Ultimate;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C16D-16GTZB (2x8 ГБ, 3200 МГц, 16-18-18-38-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.248);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i5-8600K. Методика

Мы работали с нескальпированным инженерным образцом процессора, его батч — L717B638.

В отличие от только что рассмотренных моделей, настольные варианты ЦП обладают лишь второй версией Turbo Boost. Нет никаких «особых» ядер, индивидуальной настройки их работы потому также нет. На бумаге всё выглядит достаточно прозаично: однопоточный сценарий заставит процессор разогнаться до 4,3 ГГц, а с ростом числа вычислительных потоков ускорение станет понемногу иссякать, остановившись на границе 4,1 ГГц — для шести активных ядер. Впрочем, достаточно часто производители системных плат отступают от подобных рекомендаций, и уже с начальными настройками этот ЦП будет работать с формулой 4,3 ГГц для любых сценариев. Именно так дело и обстояло с первой материнской платой, которая побывала в нашей лаборатории — ASUS ROG Strix Z370-E Gaming, где мы впервые изучали возможности Core i5-8600K.

Используемая в нынешних испытаниях плата уже не была столь инициативной, придерживаясь общих требований к работе. Лишь значение BCLK было слегка увеличенным. Из-за этого частота в простое равнялась 803,7 МГц вместе с 0,8 вольтами.

В простых сценариях действует напряжение уровня 1,12 В, кольцевая шина разгоняется до 4 ГГц.

Увеличение нагрузки на CPU приводит и к росту напряжения — до 1,152 В, частота будет чуть выше 4,1 ГГц.

Специалисты компании Intel создали ПО для увеличения продуктивности ПК, это XTU — Intel Extreme Tuning Utility. Более детально о нём можно узнать из раздела про разгонные возможности Core i7-7820X. Вкратце: там предусмотрена возможность «на лету» менять множители и напряжение, однако шаг прироста частоты оказывается весьма большим — 100 МГц, если опираться на стандартное значение BCLK. Для ряда случаев ею вполне уместно пользоваться, но сегодня я предпочту фирменное ПО для материнских плат (TurboV Core) от инженеров ASUS, именно по причине открытого тут доступа к дробным значениям опорной частоты. У других вендоров, как правило, есть пусть и не настолько развитые утилиты, но в них множитель ЦП и (или) базовую частоту тоже можно формировать в режиме реального времени.

Для первичного исследования разгонного потенциала я использовал метод, уже описанный в первой части этого цикла сравнений (для процессоров AMD Ryzen). Напомню его суть. В качестве постоянной нагрузки на ЦП привлекался сценарий wPrime «1024M», шаг частоты (опорной или самого ЦП) постепенно увеличивался, ровно до момента, когда система теряла стабильность. Такой метод не подразумевает наличие какой-либо действительной стабильности, но как экспресс-оценка возможностей вполне неплох. Следует помнить про указание правильного числа используемых потоков в настройках. В роли начальных отметок я выбрал 4300 МГц и 1,25 В. Ещё сразу следует правильно подобрать профиль LLC, чтобы уровень напряжения был близок к задуманному. После появления первого BSOD питающее напряжение я повышал ещё на 0,05 В, затем испытания стартовали с частотной отметки, когда стабильность ещё сохранялась в ходе прошлого цикла. В качестве итога получились такие цифры:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-8600K 1,25 1,264 5253
Core i5-8600K 1,3 1,312 5303
Core i5-8600K 1,35 1,36 5352
Core i5-8600K 1,4 ≤ 1,424 5366

Среди профилей LLC у стендовой платы не нашлось такого, с которым стабилизация напряжения у CPU оказалась бы идеальной. С выбранным имел место лёгкий прирост относительно установок.

Внизу есть скриншоты, соответствующие минутным временным отрезкам, чтобы была возможность оценить степень его истинной стабильности (именно под эту стадию экспериментов, а дольше проводить их не имело особого смысла). Там же имеются температурные сведения каждого из ядер.

Поиск стабильности на отметке 5,3 ГГц является одной из категорий наших тестов разгонных возможностей материнских плат. Между собой все они отличаются необходимым и достаточным уровнем процессорного напряжения. Безусловно, в эту категорию не попадает LinX или другие стресс-утилиты, где нагрев CPU значительно выше, каждый пользователь в праве сам решить какую из вершин его процессор должен покорить и как именно это событие фиксировать, чтобы считать свершившимся.

Перед тем, как заняться окончательной стабилизацией системы, я разогнал набор памяти. Мы специально использовали ту же пару модулей, что и в тестах AMD Ryzen. Здесь получилось форсировать такой режим — 3733 МГц с набором задержек 17-18-18-39-2T. Вспомогательные напряжения не повышались вообще, а на модулях действовали 1,48 В. Заслуги не лежат в комбинации «отобранного» CPU и «особой» материнской платы. Чуть больший рубеж этот же комплект покорил с процессором прошлого поколения на системе с основой базового уровня — ASRock Z270 Pro4.

И последний вопрос, который хотелось бы затронуть — частота Uncore. В ходе экспериментов я провел ряд замеров, предлагаю изучить их с целью поиска ответа на вопрос, какой же она должна быть при условии разгона ЦП.

102x39=3978 (МГц)

102x43=4386 (МГц)

102x46=4692 (МГц)

102x49=4998 (МГц)

102x52=5304 (МГц)

Особого, яркого эффекта от разгона этого блока при установленных нами частотах ЦП и ОЗУ я не увидел. Но, как показала практика, подобный «разгон» не требует значимых вспомогательных действий (например, роста каких-либо напряжений, даже второстепенных). Небольшие проблески в улучшении работы памяти всё же можно проследить, особенно если поглядывать на латентность, потому для финальной конфигурации стенда я выбрал классические «минус три» от множителя ЦП.

Теперь, когда все важные частоты определены, можно заняться поиском стабильных рабочих напряжений. Главным образом, это касается процессорного. Остальные фактически не зависели от типа применяемых нагрузочных сценариев. Как и с процессорами AMD, самым требовательным тестом стал x265 HD Benchmark 2.1.0.4.

1,392 В — с этим действующим значением не было проблем как со стабильностью системы, так и со всеми тестовыми утилитами. Перегрева ЦП также не происходило, а он, напомню, не был скальпированным. Не лишним будет напомнить ещё раз — этот режим работы не затрагивает проверку утилитами вроде LinX или Prime95. C ними итоговая комбинация частоты, температуры и напряжения будет уже совершенно другой.

Как и в случае с процессорами для сегмента HEDT, рассмотренными выше, использовалась единая формула частоты для всех вычислительных ядер. Мультипоточным является большинство наших тестов, потому там отличий не будет, а вот для однопоточных сценариев (у каждого из пользователей — свои требования к ПК) оверклокерский рубеж мог бы стать ещё выше, но для этого потребуется привлечь в схему настройки набор из множителей для Turbo Boost. Также для облегчения стабилизации системы метод установки напряжения процессора был выбран с фиксируемым значением, тогда как существует еще как минимум пара способов, но они больше помогут сэкономить немного энергии в простое, а не быстрее подобрать нужное значение (невысокое, но достаточное) напряжения для CPU. Здесь у владельца также появляется ещё одно поле для выбора. Как и с частотой, нашей целью была именно стабильная работа системы в ряде приложений, а не максимальная энергоэффективность разогнанного ПК.

Page 3

Эта модель процессоров была одной из самых покупаемых по причине фактической доминации в сегменте настольных ПК. Даже в 2018 году немалое число продаваемых готовых сборок опирается именно на этот ЦП. Для замеров привлекалась инженерная версия с батчем L631F645, без осуществления скальпирования.

Возможности линейки кристаллов Kaby Lake-S описаны в обзоре младшей модели — Core i5-7600K. Весомых отличий от Coffee Lake-S нет, потому методика разгона будет такой же. С начальными настройками частота CPU равна 803,9 МГц (вновь играет роль слегка повышенная базовая), напряжение составляет 0,704 В.

Рост частоты с однопоточными сценариями сформирует 4526 МГц, у напряжения уровень достигал 1,264 В.

Модель используемой материнской платы может быть причислена к тем, где есть явное вмешательство в штатные частотные формулы, потому как многопоточные задания выполнялись при неснижаемой частоте. Рост напряжения составил 1,28 В.

Роль утилиты, где вносились правки в текущую конфигурацию системы «на лету» выполнила всё та же ASUS TurboV Core.

На этот раз уровень LLC я выбрал чуть ниже — Level 5. Прочие параметры были в точности такими, как в прошлой главе.

Значения напряжений и температур ядер в ходе экспресс-тестов отображены на скриншотах ниже.

Финальный результат испытаний имеет следующий вид:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i7-7700K 1,25 1,248 4894
Core i7-7700K 1,3 ≤ 1,312 4923
Core i7-7700K 1,35 1,36 4953
Core i7-7700K 1,4 1,408 5004

Схема работы ОЗУ была определена разделом выше, остаётся вопрос кольцевой шины. Установить схему полностью симметрично с множителем ЦП нельзя, реальный множитель оказывается на три пункта ниже. Несколько возможных вариантов конфигурации системы показали такие результаты:

100x40=4000 (МГц)

100x43=4300 (МГц)

100x46=4600 (МГц)

Лучше всего виден прирост скорости работы по показателям кэша L3, но и в латентности памяти можно заметить отклик от оверклокинга. Потому, как и принято, будем в работе Uncore использовать практику «минус три» пункта от множителя ЦП. В качестве наиболее сложного теста из нашей программы снова использовался x265 HD Benchmark 2.1.0.4.

Необходимым и достаточным напряжением для частоты 4,9 ГГц стали 1,344 вольт. Нескальпированный CPU в случае с wPrime грелся не больше, чем 79 °С, для других, более тяжёлых утилит, очевиден эдакий «запас», до активации троттлинга в ходе наших замеров быстродействия дело не доходило.

Чтобы стабилизировать работу памяти со схемой 3733 МГц вместе c 17-18-18-39-2T, потребовалось выбрать для переменной DRAM Voltage 1,45 В. Однако здесь более интересна второстепенная переменная tCWL (CAS Write Latency). Рост вспомогательных напряжений каким-то образом её менял, вводя систему в состояние невозможности прохождения POST. Потому вместе с CPU IO Voltage (1,15 В) и SA Voltage (1,1 В), я фиксировал «16» в качестве постоянного значения.

Фактические уровни этих напряжений были больше — так отреагировала на установки материнская плата.

Разгон Core i5-6600K

Пожалуй, этот «четырёхядерник» можно назвать последним из числа активно покупающихся энтузиастами, потому как владельцев Core i5-7600K найти уже действительно тяжело. Разгонный потенциал ЦП серьёзно отличался от образца к образцу, превращая приобретение в настоящую лотерею. У нас участником оказался инженерный экземпляр с батчем L512C501, который тоже не скальпировался.

Работа в стоке и с разгоном при участии разной оперативной памяти уже нами рассматривалась, об этом упоминалось во вступлении. Сконцентрируемся на режиме работы именно в этот раз. В бездейственном состоянии частота равна 803,7 МГц при напряжении 0,88 В.

Из-за завышенной BCLK, частота с однопоточной нагрузкой слегка превысит 3,9 ГГц, напряжение будет доходить до 1,312 В.

Равно как и с Core i7-7700K, плата вмешивается в естественный ход вещей и меняет формулу работы CPU при использовании четырёх потоков — величина будет такой же, как с одним потоком. Напряжение вырастет до 1,344 В.

Методика экспресс-разгона останется неизменной: будем использовать утилиту ASUS TurboV Core, стартовой частотой выставим 4300 МГц. Профиль LLC такой же, как и разделом выше.

Выбранный Level 5 обеспечит лёгкое превышение уровня напряжения относительно установленной отметки. О нагреве процессора при нагрузке посредством wPrime также можно судить по сделанным скриншотам.

Удалось получить следующие результаты:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-6600K 1,25 1,264 4618
Core i5-6600K 1,3 1,312 4659
Core i5-6600K 1,35 1,36 4761
Core i5-6600K 1,4 1,408 4788

Для полной картины, здесь тоже проведём анализ эффекта от повышения частоты кольцевой шины.

100x38=3800 (МГц)

100x41=4100 (МГц)

100x44=4400 (МГц)

100x47=4700 (МГц)

Оказалось, на используемой материнской плате можно установить множитель Uncore идентично с выбранным для процессора. Как показал быстрый анализ быстродействия, организованный при содействии AIDA64, прок есть даже от самого крайнего значения. Дополнительных усилий по стабилизации системы с ним не требуется, потому для тестов мы остановились на частоте 4700 МГц. Как и прежде, самой требовательной утилитой к подбору переменных при оверклокинге стал x265 HD Benchmark (2.1.0.4).

Испытания в ходе работы ЦП на частоте 4,7 ГГц вместе с разогнанными Uncore и DRAM помогли выяснить необходимый и достаточный уровень процессорного напряжения — 1,344 В. Нагрев CPU при использовании wPrime совершенно скромный, картина же происходящего при запуске LinX и других тяжёлых сценариев для системы будет, конечно, совсем иной. Но для наших запланированных тестов скальпирование мало в чём бы помогло, равно как и привлечение СЖО.

Схема работы памяти не менялась — 3733 МГц при конфигурации задержек 17-18-18-39-2T. Напряжение на модулях устанавливалось равным 1,45 В, CPU IO и SA выставлялись на уровень 1,1 В. Всё так же нужно было фиксировать tCWL на отметке 16.

В реальности все эти напряжения слегка превышали определённый для них уровень.

Page 4

В качестве тестов использовались следующие приложения:

  • AIDA64 5.95.4531 и 5.95.4544 (Cache & Memory benchmark, BenchDLL 4.3.770-x64);
  • Super PI 1.5 XS;
  • wPrime 2.10;
  • x265 HD Benchmark (2.1.0.4);
  • MAXON CINEBENCH R15;
  • POV-Ray 3.7.0;
  • LuxMark v3.1;
  • Futuremark 3DMark 13 (2.4.4180 — для LGA2066 и LGA2011-3, 2.4.4264 — для LGA1151);
  • DiRT 3 Complete Edition (1.2.0.0);
  • Hitman: Absolution (1.0.447.0).

Все обновления для ОС, доступные в Центре Обновления Windows, были инсталлированы. Сторонние антивирусные продукты не привлекались, тонкие настройки системы не производились, размер файла подкачки определялся системой самостоятельно.

Результаты тестирования

Реализация двухканальной памяти у процессоров Intel позволяет получить результаты выше, чем у соперника, а четырёхканальная схема была быстрее двухканальной. Анализ латентности ещё интереснее. Самым быстрым оказался четырёхядерный ЦП, опередив шестиядерный, к тому же работающий быстрее него. Ячеистая структура Core i7-7820X продемонстрировала самый худший показатель (среди продуктов Intel), хотя в первых трёх замерах равных такой системе не было.

Скорость расчёта числа Pi непреклонна — чем выше частота, тем быстрее процесс происходит. Потому результаты тут достаточно предсказуемые.

wPrime отлично реагирует на прирост как в числе ядер, так и в количестве потоков. Высокая частота также понадобится. Из-за последнего атрибута процессоры Intel оказываются впереди преследователей из лагеря AMD. Однако в скором будущем есть все основания для их плотного соперничества.

C перекодированием видео дело вновь обстоит лучше у продуктов Intel. На этом тесте мы ещё раз подробно остановимся в конце этого материала. По скорости работы шестнадцать потоков в системе с Core i7-7820X выглядят более чем уверенно.

Весьма любопытная картина получилась в Cinebench. Шесть быстрых ядер без Hyper-Threading у Core i5-8600K нагнали куда более медленные с точки зрения тактовой частоты двенадцать потоков у Core i7-6850K. Очень близко к ним находится соперник в лице разогнанного Ryzen 5 1600.

Рендеринг сцены в POV-Ray значительно лучше проходит на Core i5-8600K, два преследователя из прошлого теста заметно отстали. По сопоставлению выступлений Core i5-6600K и Core i7-7700K можно констатировать не особо большой эффект от наличия SMT, чем и объясняется лидерство i5-8600K, в эту же логическую схему можно включить разность баллов для Ryzen 3 1200 и Ryzen 5 1400.

LuxMark хорошо откликается на производительную систему памяти, потому здесь четыре канала у Core i7-6850K оказались предпочтительнее, чтобы выбороть первое место у всё той же группы преследователей, образовавшейся в табеле Cinebench. Но общий, суммарный балл в тесте заметно уравновесился из-за более чем весомого вклада в него (идентичной) видеоподсистемы наших стендов.

Итоги в Fire Strike стоит разобрать детально. На общий балл серьёзно влияет используемый процессор, так, самый мощный из нынешних тестовых экземпляров ожидаемо оказался на первом месте.

Ровными рядами — в зависимости от типа используемой платформы — выстроились итоги графических замеров. Аутсайдеры — системы с процессорами AM4, а лидеры — все платы с LGA1151.

Сценарий Physics замечательно реагирует на наличие технологии SMT. И всё же шесть реальных ядер стали быстрее, чем восемь «виртуальных», если рассматривать результаты Core i5-8600K и Core i7-7700K. При равных количествах ядер и потоков продукты AMD уступают процессорам Intel, очевидно, сказывается не такая высокая тактовая частота.

DiRT 3 необходим нам для анализа производительности подсистемы памяти. Отказ от кольцевой шины в Core i7-7820X нашёл отклик в результатах, пусть и небольшой. Но на фоне свежих Ryzen он выглядит точно лучше, не говоря уже классические процессоры, где такой тип шины давно не без успехов используется.

Низкие настройки качества при небольшом разрешении — таким способом процессорозависимость игры можно увеличить, хотя бы для анализа. Безапелляционным лидером в этом состязании стал разогнанный Core i5-8600K. Шесть реальных ядер и высокие оверклокерские возможности — вот и весь секрет успеха. Core i7-7820X формально обошёл менее скоростной Core i7-6850K, но, по правде говоря, большее число активных потоков ничем ему в Hitman: Absolution не помогло.

Возросшая нагрузка на видеоподсистему разом уравняла практически всех наших участников тестирования. Хотя и тут Core i5-8600K всё же выделяется, пусть и буквально символически.

Энергопотребление системы

Замеры выполнялись после прохождения всех прочих тестов в «устоявшемся» режиме компьютера при помощи прибора собственной разработки. Для создания нагрузки я выбрал тестовую дисциплину x265 HD Benchmark (2.1.0.4). Производился расчёт среднего значения потребления тестового стенда «от розетки» на протяжении цикла перекодирования, а затем, после завершения теста, ещё минуту замерялся уровень, когда система простаивала.

Разогнанные шесть ядер потребляют больше четырёх, а восемь — больше шести. Это вполне логично. Впрочем, результат потребления шестнадцатипоточного Core i7-7820X способен ошеломить, а потому я решил приготовить ещё один график, чтобы понять, куда же девается такое огромное количество энергии.

На самом деле всё оказалось достаточно прозаично. Все современные процессоры, так или иначе, находятся в одной условной группе эффективности, для контраста можно взглянуть на FX-6100. И всё же лучшим с точки зрения «полезных» растрат энергии стал Core i7-7700K, четыре ядра и SMT — вот его формула успеха. Этот тест был самым сложным с точки зрения подбора параметров разогнанных систем. Наверняка для других утилит картина будет отличаться.

Вывод

Последние годы аудитория энтузиастов была вынуждена следить за процессорами Intel, потому как развитие сектора, так или иначе, происходило именно силами их специалистов. А вот насколько успешно это было — мы оставим за скобками, поскольку каждый имеет собственное определение для этого понятия. В этом обзоре мы остановились на функционировании систем исключительно в режимах оверклокинга, хотя разработчики немало усилий потратили на энергоэффективность и развитие технологий ускорения — Turbo Boost насчитывает вот уже три поколения, плодом этих разработок мы пренебрегли. Каждый энтузиаст волен в свой способ настроить свою систему, пожелав (или нет) использовать сложную схему прибавки частоты, зависимой от: температуры, теплопакета процессора, степени нагрузки на систему. Также можно совершенно свободно подходить и к способам формирования напряжения на процессоре. При массированном разгоне большинство этих технологий затмеваются, поскольку те направлены скорее на поиск максимальной эффективности вычислений, а не предельную вычислительную мощность.

Скальпировать или нет? Использовать кулеры, готовые СЖО или собирать весь контур самому? Всё это также зависит от личных предпочтений владельца и будущих сценариев эксплуатации компьютера. Для ряда тестов из нашего списка наличие СЖО мало в чём пригодилось, равно как и скальпирование. Младшие (из нынешних) моделей CPU работают без надвигающегося перегрева под хорошим воздушным кулером даже в условиях их предельного разгона.

Компания AMD безусловно расшевелила процессорный рынок, точнее, позволила всем нам вспомнить про времена, когда конкуренция была жива. На сегодняшний день CPU от Intel всё ещё быстрее, и именно по этим причинам продукты AMD имеют более привлекательную стоимость. Всё может вскоре измениться, ведь уже на апрель оба лагеря готовятся презентовать новые продукты. У AMD это будут более быстрые процессоры, а ряд PCH начального уровня от Intel запустит продажи более доступных системных плат, тем самым сборка шестиядерного ПК будет стоить ещё дешевле.

Надеемся, после ознакомления с нашими материалами читатели смогут правильно сориентироваться в текущем положении дел на рынке.

www.overclockers.ua

Разгон и сравнение процессоров. Часть II: решения от Intel — Skylake-X, Broadwell-E, Coffee Lake-S, Kaby Lake-S и Skylake-S

Компания Intel более 10 лет чувствовала себя вольготно на процессорном рынке, пока AMD не представила решения на базе микроархитектуры Zen. Последние оказались достаточно производительными, что заставило чипмейкера корректировать свои планы, дабы составить конкуренцию многоядерным продуктам оппонента. Количество ядер для HEDT-платформы было доведено до 18 в самой старшей модели Core i9, что при наличии технологии Hyper-Threading позволило обрабатывать 36 потоков за раз, в то время как AMD Ryzen Threadripper — максимум 32. Для новинок потребовался очередной сокет — LGA2066, и материнские платы на чипсете X299 с его поддержкой.

Процессор Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Core i7-7740X Core i5-7640X
Ядро Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Kaby Lake-X Kaby Lake-X
Разъём LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066 LGA2066
Техпроцесс, нм 14 14 14 14 14 14 14 14 14
Число ядер (потоков) 18 (36) 16 (32) 14 (28) 12 (24) 10 (20) 8 (16) 6 (12) 4 (8) 4
Номинальная частота, ГГц 2,6 2,8 3,1 2,9 3,3 3,6 3,5 4,3 4
Частота Turbo Boost, ГГц 4,2 4,2 4,3 4,3 4,3 4,3 4,0 4,5 4,2
Частота Turbo Boost Max, ГГц 4,4 4,4 4,4 4,4 4,5 4,5
Разблокированный на повышение множитель + + + + + + + + +
L1-кэш, Кбайт 18 x (32 + 32) 16 x (32 + 32) 14 x (32 + 32) 12 x (32 + 32) 10 x (32 + 32) 8 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 18 x 1024 16 x 1024 14 x 1024 12 x 1024 10 x 1024 8 x 1024 6 x 1024 4 x 256 4 x 256
L3-кэш, Мбайт 24,75 22 19,25 16,5 13,75 11 8,25 8 6
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2666
Каналов памяти 4 4 4 4 4 4 4 2 2
Линий PCI-E 44 44 44 44 44 28 28 16 16
TDP, Вт 165 165 165 140 140 140 140 112 112
Рекомендованная стоимость, $ 1999 1699 1399 1199 999 599 389 350 243

Особняком здесь стоят модели Core i7 и Core i5, обладающие лишь четырьмя ядрами, а младшая даже лишена Hyper-Threading.

Под натиском доступных решений AMD не осталась в стороне и массовая платформа. Модели Core i7 и Core i5 обзавелись шестью ядрами и, соответственно, увеличенным кэшем третьего уровня. Досталось и процессорам Core i3 — они лишились поддержки Hyper-Threading, но при этом способны обрабатывать четыре потока благодаря аналогичному числу физических ядер. Но не обошлось и без ложки дегтя. Несмотря на используемый сокет LGA1151, новинки оказались несовместимы с платами на чипсетах 200 и 100 серий. Для их работы потребовались «материнки» на логике 300 серии. Пока что доступны решения на старшем чипсете Z370, но на днях должны быть представлены и более дешевые хабы — h470, B360 и h410.

Процессор Core i7-8700K Core i7-8700 Core i5-8600K Core i5-8400 Core i3-8350K Core i3-8100
Ядро Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S Coffee Lake-S
Разъём LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14 14
Число ядер (потоков) 6 (12) 6 (12) 6 6 4 4
Номинальная частота, ГГц 3,7 3,2 3,6 2,8 4,0 3,6
Частота Turbo Boost, ГГц 4,7 4,2 4,3 4,0  –
Разблокированный на повышение множитель + + +
L1-кэш, Кбайт 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 6 x (32 + 32) 4 x (32 + 32) 4 x (32 + 32)
L2-кэш, Кбайт 6 x 256 6 x 256 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 12 12 9 9 8 6
Графическое ядро UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630 UHD Graphics 630
Частота графического ядра, МГц 350–1200 350–1200 350–1150 350–1050 350–1150 350–1100
Поддерживаемая память DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2666 DDR4-2400 DDR4-2400
Каналов памяти 2 2 2 2 2 2
TDP, Вт 95 65 95 95 91 65
Рекомендованная стоимость, $ 370 312 258 187 179 117

В этом тестировании примут участие знаковые процессоры компании Intel последних лет. Core i5-6600K (Skylake-S) является представителем первой настольной линейки, где появилась поддержка DDR4. В следующем поколении продуктов, откуда мы выбрали Core i7-7700K (Kaby Lake-S), разработчики больше внимания уделили развитию интегрированной графики, но разгонный потенциал самых дорогих моделей оказался повыше. Долгожданные изменения произошли в последнем, восьмом, поколении — число ядер в семействах Core i5 и Core i7 теперь увеличилось до шести, у нас в распоряжении оказался Core i5-8600K (Coffee Lake-S). Сегмент HEDT также сложно обойти вниманием, Core i7-6850K (Broadwell-E) — один из первых ЦП, выпущенных на 14-нм техпроцессе, архитектурные изменения были небольшими, тянущимися корнями к Haswell-E. Core i7-7820X (Skylake-X) представляет концептуально новый подход разработчика: на смену кольцевой шине пришла ячеистая (mesh) структура, а размер кэша L2 оказался увеличен за счёт L3. Будет ли такое архитектурное построение процессоров теперь общепринятым — покажет лишь время. Ниже расположена таблица с их характеристиками.

Процессор Core i7-7820X Core i7-6850K Core i5-8600K Core i7-7700K Core i5-6600K
Ядро Skylake-X Broadwell-E Coffee Lake-S Kaby Lake-S Skylake-S
Разъём LGA2066 LGA2011-3 LGA1151 LGA1151 LGA1151
Техпроцесс, нм 14 14 14 14 14
Число ядер (потоков) 8 (16) 6 (12) 6 (6) 4 (8) 4 (4)
Номинальная частота, ГГц 3,6 3,6 3,6 4,2 3,5
Частота Turbo boost, ГГц 4,3 3,8 4,3 4,5 3,9
L1-кэш, Кбайт 8 x (32+32) 6 x (32+32) 6 x (32+32) 4 x (32+32) 4 x (32+32)
L2-кэш, Кбайт 8 x 1024 6 x 256 6 x 256 4 x 256 4 x 256
L3-кэш, Мбайт 11 15 9 8 6
Графическое ядро Intel UHD Graphics 630 Intel HD Graphics 630 Intel HD Graphics 530
Частота графического ядра, МГц 350–1150 350–1150 350–1150
Число унифицированных шейдерных процессоров 24 24 24
Поддерживаемая память DDR4-2666 DDR4-2400 DDR4-2666 DDR4-2400DDR3L-1600 DDR4-2133DDR3L-1600
Каналов памяти 4 4 2 2 2
TDP, Вт 140 140 95 91 91

Как и в перовой части текущего цикла статей, где рассматривались представители конкурирующего лагеря, мы будем проводить оверклокинг экземпляров ЦП с выяснением их разгонного потенциала (Core i7-6850K — лишь формально, поскольку это его не первое появление на публике). В завершении будут общие сводные данные по производительности стендов в ряде бенчмарков, а в третьей, завершающей части все системы сойдутся в условиях нагрузок играми.

Допускаю, для полноты картины многим из читателей не будет хватать той или иной модели процессора. Не так давно мы выясняли, как появление поддержки DDR4 оказало влияние на финальное быстродействие Core i5-6600K. Там же приняли участие немало «народных» моделей ЦП. Призываю ознакомиться с теми результатами и мысленно провести корреляцию с итогами этого обзора.

Тестовые стенды для LGA2066 и LGA2011-3

Для систем HEDT были подобраны следующие комплектующие:

  • материнская плата №1: ASUS Prime X299-Deluxe (UEFI 1004);
  • материнская плата №2: ASRock Fatal1ty X99 Professional Gaming i7 (UEFI P1.40);
  • СЖО: be quiet! Silent Loop 280mm;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C14Q-32GTZ (4x8 ГБ, 3200 МГц, 14-14-14-34-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.192);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), Intel Turbo Boost Max Technology 3.0 Driver (1.0.0.1033), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i7-7820X

Мы использовали розничный экземпляр с батчем L716B364:

Процессоры Intel из сегмента HEDT характеризуются поддержкой третьей версии Turbo Boost. Уже на заводе производитель отмечает наиболее «способные» ядра, они будут привлекаться во время лёгких нагрузок на ЦП, когда число активных потоков будет невелико. В то же самое время энтузиастам такой жест от вендора может навредить в случае, когда ядра с лучшим оверкокерским потенциалом окажутся не на первых ролях в такой заведомо расписанной схеме. Кто знает, быть может, в развитии следующего поколения этой технологии инженеры Intel откроют способ для ручной установки подобного приоритета.

В простое частота на ядрах опускается до 1,2 ГГц. Наблюдать за напряжением привычными методами вроде диагностических утилит будет в корне неверно. Для нашей платы оно отображалось как 0,95 В.

Как множитель, так и действующее напряжение для каждого ядра могут быть разным. Однопоточный тест SuperPI «ускоряет» одно из ядер до 4,5 ГГц (у нашего экземпляра оно пятое по счёту), а напряжение всё так же остаётся равным 0,95 В (что, очевидно, идёт вразрез с реалиями). Частота Uncore была на уровне 2,4 ГГц.

И при полной нагрузке на процессор напряжение не увеличилось, оно, якобы, даже слегка уменьшилось и оказалось равно 0,928 В. Ядра функционировали на частоте 4,0 ГГц, блок Uncore — без изменений.

Общий подход к проведению анализа разгонного потенциала подробно изложен в соответствующей части обзора материнской платы ASUS Prime X299-A. Там рассматривался инженерный экземпляр Core i7-7820X, а участник именно этого тестирования по той же схеме подвергался анализу на другом устройстве — MSI X299 SLI Plus. Для подробного знакомства будет правильно изучить оба материала, а я воспользуюсь общим итогом тех наработок.

Итак, известен предельный разгон этого процессора — 4,6 ГГц для нагрузки класса Cinebench R15. Но такую планку он не удержал во время нашего тестирования, наиболее критичным был запуск x265 HD Benchmark. Пришлось откатиться на один пункт, уровень 4,5 ГГц уже придал системе ожидаемую стабильность. Про запуск LinX или каких-либо ещё стресс-тестов речь не идёт.

Подчеркну, здесь производился комплексный разгон: ядер, памяти и блока Uncore. А ещё я не занимался тонкой подстройкой работы каждого из ядер — наверняка кое-где можно было бы надбавить итоговое частотное значение, равно как и не выполнялась подстройка сложной схемы с приоритетностью ядер в зависимости от типа нагрузки. Потому в однопоточных тестах результаты, скорее всего, на несколько процентов могут быть лучше. Впрочем, подавляющее большинство сценариев являются многопоточными, а результаты там — наиболее интересны.

Процессор не скальпировался, а охлаждала его одна из самых эффективных готовых двухсекционных СЖО. Между тем, разница именно в наших тестах по температуре ядер относительно лучших моделей суперкулеров едва превышала один градус (на эту роль я привлекал лабораторный Cryorig R1 Ultimate). Замеры проводились с иным набором памяти, где радиаторы имели меньшую высоту, с ними эффективная частота была поменьше. У модулей класса G.Skill TridentZ на сокете LGA2066 имеется общая проблема совместимости. Узел VRM на протяжении всего времени замеров обдувался непосредственно одним среднескоростным вентилятором с крыльчаткой 140 мм (Cryorig XF140). Такие средства были скорее страховкой, чем насущной необходимостью, про серьёзный нагрев стабилизатора речь не шла.

Разгон Core i7-6850K

Этот участник принимал участие в сравнительных тестах с Ryzen 7, его батч — J618B767.

Занимательные сведения о возможностях семейства этого CPU есть в обзоре десятиядерного Core i7-6950X. Я сконцентрируюсь лишь на поведении нашего испытуемого в рамках этого тестирования. Итак, приоритет ядер в фирменной утилите имеет строго обратный нумерации характер, что весьма любопытно.

Частота в простое равна 1,2 ГГц, напряжение на ядрах 0,8 В (как и с Core i7-7820X, данные скорее справочные).

С однопоточной нагрузкой он ускорялся до 4 ГГц, роста напряжения вновь не отмечается.

Все двенадцать потоков приводили к повышению напряжения до 1,185 В, на ядрах частота равнялась 3,7 ГГц. Кольцевая шина всё время работала на уровне 2800 МГц.

Начальные параметры имели вот такой вид:

В предыдущем сравнительном обзоре, где использовался этот же процессор, был достаточно жёсткий подход к установке верхней частотной отметки, а теперь, придерживаясь идей, изложенных в предыдущей главе, удалось повысить планку до 4,3 ГГц. Память функционировала с формулой 3,2 ГГц, а блок Uncore — на грани 3,3 ГГц (с большей величиной уже возникали сбои в ходе выполнения сценариев).

Общий набор действующих переменных выглядел так:

Материнская плата слегка завышает напряжение на памяти, но в ходе тестовых сценариев оно понижается до близкого к 1,5 В уровню.

Page 2

Системы среднего уровня базировались на таких компонентах:

  • материнская плата №1: ASUS ROG Maximus X Formula (UEFI 0220);
  • материнская плата №2: ASUS ROG Maximus IX Apex (UEFI 0801);
  • кулер: Cryorig R1 Ultimate;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C16D-16GTZB (2x8 ГБ, 3200 МГц, 16-18-18-38-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.248);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i5-8600K. Методика

Мы работали с нескальпированным инженерным образцом процессора, его батч — L717B638.

В отличие от только что рассмотренных моделей, настольные варианты ЦП обладают лишь второй версией Turbo Boost. Нет никаких «особых» ядер, индивидуальной настройки их работы потому также нет. На бумаге всё выглядит достаточно прозаично: однопоточный сценарий заставит процессор разогнаться до 4,3 ГГц, а с ростом числа вычислительных потоков ускорение станет понемногу иссякать, остановившись на границе 4,1 ГГц — для шести активных ядер. Впрочем, достаточно часто производители системных плат отступают от подобных рекомендаций, и уже с начальными настройками этот ЦП будет работать с формулой 4,3 ГГц для любых сценариев. Именно так дело и обстояло с первой материнской платой, которая побывала в нашей лаборатории — ASUS ROG Strix Z370-E Gaming, где мы впервые изучали возможности Core i5-8600K.

Используемая в нынешних испытаниях плата уже не была столь инициативной, придерживаясь общих требований к работе. Лишь значение BCLK было слегка увеличенным. Из-за этого частота в простое равнялась 803,7 МГц вместе с 0,8 вольтами.

В простых сценариях действует напряжение уровня 1,12 В, кольцевая шина разгоняется до 4 ГГц.

Увеличение нагрузки на CPU приводит и к росту напряжения — до 1,152 В, частота будет чуть выше 4,1 ГГц.

Специалисты компании Intel создали ПО для увеличения продуктивности ПК, это XTU — Intel Extreme Tuning Utility. Более детально о нём можно узнать из раздела про разгонные возможности Core i7-7820X. Вкратце: там предусмотрена возможность «на лету» менять множители и напряжение, однако шаг прироста частоты оказывается весьма большим — 100 МГц, если опираться на стандартное значение BCLK. Для ряда случаев ею вполне уместно пользоваться, но сегодня я предпочту фирменное ПО для материнских плат (TurboV Core) от инженеров ASUS, именно по причине открытого тут доступа к дробным значениям опорной частоты. У других вендоров, как правило, есть пусть и не настолько развитые утилиты, но в них множитель ЦП и (или) базовую частоту тоже можно формировать в режиме реального времени.

Для первичного исследования разгонного потенциала я использовал метод, уже описанный в первой части этого цикла сравнений (для процессоров AMD Ryzen). Напомню его суть. В качестве постоянной нагрузки на ЦП привлекался сценарий wPrime «1024M», шаг частоты (опорной или самого ЦП) постепенно увеличивался, ровно до момента, когда система теряла стабильность. Такой метод не подразумевает наличие какой-либо действительной стабильности, но как экспресс-оценка возможностей вполне неплох. Следует помнить про указание правильного числа используемых потоков в настройках. В роли начальных отметок я выбрал 4300 МГц и 1,25 В. Ещё сразу следует правильно подобрать профиль LLC, чтобы уровень напряжения был близок к задуманному. После появления первого BSOD питающее напряжение я повышал ещё на 0,05 В, затем испытания стартовали с частотной отметки, когда стабильность ещё сохранялась в ходе прошлого цикла. В качестве итога получились такие цифры:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-8600K 1,25 1,264 5253
Core i5-8600K 1,3 1,312 5303
Core i5-8600K 1,35 1,36 5352
Core i5-8600K 1,4 ≤ 1,424 5366

Среди профилей LLC у стендовой платы не нашлось такого, с которым стабилизация напряжения у CPU оказалась бы идеальной. С выбранным имел место лёгкий прирост относительно установок.

Внизу есть скриншоты, соответствующие минутным временным отрезкам, чтобы была возможность оценить степень его истинной стабильности (именно под эту стадию экспериментов, а дольше проводить их не имело особого смысла). Там же имеются температурные сведения каждого из ядер.

Поиск стабильности на отметке 5,3 ГГц является одной из категорий наших тестов разгонных возможностей материнских плат. Между собой все они отличаются необходимым и достаточным уровнем процессорного напряжения. Безусловно, в эту категорию не попадает LinX или другие стресс-утилиты, где нагрев CPU значительно выше, каждый пользователь в праве сам решить какую из вершин его процессор должен покорить и как именно это событие фиксировать, чтобы считать свершившимся.

Перед тем, как заняться окончательной стабилизацией системы, я разогнал набор памяти. Мы специально использовали ту же пару модулей, что и в тестах AMD Ryzen. Здесь получилось форсировать такой режим — 3733 МГц с набором задержек 17-18-18-39-2T. Вспомогательные напряжения не повышались вообще, а на модулях действовали 1,48 В. Заслуги не лежат в комбинации «отобранного» CPU и «особой» материнской платы. Чуть больший рубеж этот же комплект покорил с процессором прошлого поколения на системе с основой базового уровня — ASRock Z270 Pro4.

И последний вопрос, который хотелось бы затронуть — частота Uncore. В ходе экспериментов я провел ряд замеров, предлагаю изучить их с целью поиска ответа на вопрос, какой же она должна быть при условии разгона ЦП.

102x39=3978 (МГц)

102x43=4386 (МГц)

102x46=4692 (МГц)

102x49=4998 (МГц)

102x52=5304 (МГц)

Особого, яркого эффекта от разгона этого блока при установленных нами частотах ЦП и ОЗУ я не увидел. Но, как показала практика, подобный «разгон» не требует значимых вспомогательных действий (например, роста каких-либо напряжений, даже второстепенных). Небольшие проблески в улучшении работы памяти всё же можно проследить, особенно если поглядывать на латентность, потому для финальной конфигурации стенда я выбрал классические «минус три» от множителя ЦП.

Теперь, когда все важные частоты определены, можно заняться поиском стабильных рабочих напряжений. Главным образом, это касается процессорного. Остальные фактически не зависели от типа применяемых нагрузочных сценариев. Как и с процессорами AMD, самым требовательным тестом стал x265 HD Benchmark 2.1.0.4.

1,392 В — с этим действующим значением не было проблем как со стабильностью системы, так и со всеми тестовыми утилитами. Перегрева ЦП также не происходило, а он, напомню, не был скальпированным. Не лишним будет напомнить ещё раз — этот режим работы не затрагивает проверку утилитами вроде LinX или Prime95. C ними итоговая комбинация частоты, температуры и напряжения будет уже совершенно другой.

Как и в случае с процессорами для сегмента HEDT, рассмотренными выше, использовалась единая формула частоты для всех вычислительных ядер. Мультипоточным является большинство наших тестов, потому там отличий не будет, а вот для однопоточных сценариев (у каждого из пользователей — свои требования к ПК) оверклокерский рубеж мог бы стать ещё выше, но для этого потребуется привлечь в схему настройки набор из множителей для Turbo Boost. Также для облегчения стабилизации системы метод установки напряжения процессора был выбран с фиксируемым значением, тогда как существует еще как минимум пара способов, но они больше помогут сэкономить немного энергии в простое, а не быстрее подобрать нужное значение (невысокое, но достаточное) напряжения для CPU. Здесь у владельца также появляется ещё одно поле для выбора. Как и с частотой, нашей целью была именно стабильная работа системы в ряде приложений, а не максимальная энергоэффективность разогнанного ПК.

Page 3

Эта модель процессоров была одной из самых покупаемых по причине фактической доминации в сегменте настольных ПК. Даже в 2018 году немалое число продаваемых готовых сборок опирается именно на этот ЦП. Для замеров привлекалась инженерная версия с батчем L631F645, без осуществления скальпирования.

Возможности линейки кристаллов Kaby Lake-S описаны в обзоре младшей модели — Core i5-7600K. Весомых отличий от Coffee Lake-S нет, потому методика разгона будет такой же. С начальными настройками частота CPU равна 803,9 МГц (вновь играет роль слегка повышенная базовая), напряжение составляет 0,704 В.

Рост частоты с однопоточными сценариями сформирует 4526 МГц, у напряжения уровень достигал 1,264 В.

Модель используемой материнской платы может быть причислена к тем, где есть явное вмешательство в штатные частотные формулы, потому как многопоточные задания выполнялись при неснижаемой частоте. Рост напряжения составил 1,28 В.

Роль утилиты, где вносились правки в текущую конфигурацию системы «на лету» выполнила всё та же ASUS TurboV Core.

На этот раз уровень LLC я выбрал чуть ниже — Level 5. Прочие параметры были в точности такими, как в прошлой главе.

Значения напряжений и температур ядер в ходе экспресс-тестов отображены на скриншотах ниже.

Финальный результат испытаний имеет следующий вид:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i7-7700K 1,25 1,248 4894
Core i7-7700K 1,3 ≤ 1,312 4923
Core i7-7700K 1,35 1,36 4953
Core i7-7700K 1,4 1,408 5004

Схема работы ОЗУ была определена разделом выше, остаётся вопрос кольцевой шины. Установить схему полностью симметрично с множителем ЦП нельзя, реальный множитель оказывается на три пункта ниже. Несколько возможных вариантов конфигурации системы показали такие результаты:

100x40=4000 (МГц)

100x43=4300 (МГц)

100x46=4600 (МГц)

Лучше всего виден прирост скорости работы по показателям кэша L3, но и в латентности памяти можно заметить отклик от оверклокинга. Потому, как и принято, будем в работе Uncore использовать практику «минус три» пункта от множителя ЦП. В качестве наиболее сложного теста из нашей программы снова использовался x265 HD Benchmark 2.1.0.4.

Необходимым и достаточным напряжением для частоты 4,9 ГГц стали 1,344 вольт. Нескальпированный CPU в случае с wPrime грелся не больше, чем 79 °С, для других, более тяжёлых утилит, очевиден эдакий «запас», до активации троттлинга в ходе наших замеров быстродействия дело не доходило.

Чтобы стабилизировать работу памяти со схемой 3733 МГц вместе c 17-18-18-39-2T, потребовалось выбрать для переменной DRAM Voltage 1,45 В. Однако здесь более интересна второстепенная переменная tCWL (CAS Write Latency). Рост вспомогательных напряжений каким-то образом её менял, вводя систему в состояние невозможности прохождения POST. Потому вместе с CPU IO Voltage (1,15 В) и SA Voltage (1,1 В), я фиксировал «16» в качестве постоянного значения.

Фактические уровни этих напряжений были больше — так отреагировала на установки материнская плата.

Разгон Core i5-6600K

Пожалуй, этот «четырёхядерник» можно назвать последним из числа активно покупающихся энтузиастами, потому как владельцев Core i5-7600K найти уже действительно тяжело. Разгонный потенциал ЦП серьёзно отличался от образца к образцу, превращая приобретение в настоящую лотерею. У нас участником оказался инженерный экземпляр с батчем L512C501, который тоже не скальпировался.

Работа в стоке и с разгоном при участии разной оперативной памяти уже нами рассматривалась, об этом упоминалось во вступлении. Сконцентрируемся на режиме работы именно в этот раз. В бездейственном состоянии частота равна 803,7 МГц при напряжении 0,88 В.

Из-за завышенной BCLK, частота с однопоточной нагрузкой слегка превысит 3,9 ГГц, напряжение будет доходить до 1,312 В.

Равно как и с Core i7-7700K, плата вмешивается в естественный ход вещей и меняет формулу работы CPU при использовании четырёх потоков — величина будет такой же, как с одним потоком. Напряжение вырастет до 1,344 В.

Методика экспресс-разгона останется неизменной: будем использовать утилиту ASUS TurboV Core, стартовой частотой выставим 4300 МГц. Профиль LLC такой же, как и разделом выше.

Выбранный Level 5 обеспечит лёгкое превышение уровня напряжения относительно установленной отметки. О нагреве процессора при нагрузке посредством wPrime также можно судить по сделанным скриншотам.

Удалось получить следующие результаты:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-6600K 1,25 1,264 4618
Core i5-6600K 1,3 1,312 4659
Core i5-6600K 1,35 1,36 4761
Core i5-6600K 1,4 1,408 4788

Для полной картины, здесь тоже проведём анализ эффекта от повышения частоты кольцевой шины.

100x38=3800 (МГц)

100x41=4100 (МГц)

100x44=4400 (МГц)

100x47=4700 (МГц)

Оказалось, на используемой материнской плате можно установить множитель Uncore идентично с выбранным для процессора. Как показал быстрый анализ быстродействия, организованный при содействии AIDA64, прок есть даже от самого крайнего значения. Дополнительных усилий по стабилизации системы с ним не требуется, потому для тестов мы остановились на частоте 4700 МГц. Как и прежде, самой требовательной утилитой к подбору переменных при оверклокинге стал x265 HD Benchmark (2.1.0.4).

Испытания в ходе работы ЦП на частоте 4,7 ГГц вместе с разогнанными Uncore и DRAM помогли выяснить необходимый и достаточный уровень процессорного напряжения — 1,344 В. Нагрев CPU при использовании wPrime совершенно скромный, картина же происходящего при запуске LinX и других тяжёлых сценариев для системы будет, конечно, совсем иной. Но для наших запланированных тестов скальпирование мало в чём бы помогло, равно как и привлечение СЖО.

Схема работы памяти не менялась — 3733 МГц при конфигурации задержек 17-18-18-39-2T. Напряжение на модулях устанавливалось равным 1,45 В, CPU IO и SA выставлялись на уровень 1,1 В. Всё так же нужно было фиксировать tCWL на отметке 16.

В реальности все эти напряжения слегка превышали определённый для них уровень.

Page 4

В качестве тестов использовались следующие приложения:

  • AIDA64 5.95.4531 и 5.95.4544 (Cache & Memory benchmark, BenchDLL 4.3.770-x64);
  • Super PI 1.5 XS;
  • wPrime 2.10;
  • x265 HD Benchmark (2.1.0.4);
  • MAXON CINEBENCH R15;
  • POV-Ray 3.7.0;
  • LuxMark v3.1;
  • Futuremark 3DMark 13 (2.4.4180 — для LGA2066 и LGA2011-3, 2.4.4264 — для LGA1151);
  • DiRT 3 Complete Edition (1.2.0.0);
  • Hitman: Absolution (1.0.447.0).

Все обновления для ОС, доступные в Центре Обновления Windows, были инсталлированы. Сторонние антивирусные продукты не привлекались, тонкие настройки системы не производились, размер файла подкачки определялся системой самостоятельно.

Результаты тестирования

Реализация двухканальной памяти у процессоров Intel позволяет получить результаты выше, чем у соперника, а четырёхканальная схема была быстрее двухканальной. Анализ латентности ещё интереснее. Самым быстрым оказался четырёхядерный ЦП, опередив шестиядерный, к тому же работающий быстрее него. Ячеистая структура Core i7-7820X продемонстрировала самый худший показатель (среди продуктов Intel), хотя в первых трёх замерах равных такой системе не было.

Скорость расчёта числа Pi непреклонна — чем выше частота, тем быстрее процесс происходит. Потому результаты тут достаточно предсказуемые.

wPrime отлично реагирует на прирост как в числе ядер, так и в количестве потоков. Высокая частота также понадобится. Из-за последнего атрибута процессоры Intel оказываются впереди преследователей из лагеря AMD. Однако в скором будущем есть все основания для их плотного соперничества.

C перекодированием видео дело вновь обстоит лучше у продуктов Intel. На этом тесте мы ещё раз подробно остановимся в конце этого материала. По скорости работы шестнадцать потоков в системе с Core i7-7820X выглядят более чем уверенно.

Весьма любопытная картина получилась в Cinebench. Шесть быстрых ядер без Hyper-Threading у Core i5-8600K нагнали куда более медленные с точки зрения тактовой частоты двенадцать потоков у Core i7-6850K. Очень близко к ним находится соперник в лице разогнанного Ryzen 5 1600.

Рендеринг сцены в POV-Ray значительно лучше проходит на Core i5-8600K, два преследователя из прошлого теста заметно отстали. По сопоставлению выступлений Core i5-6600K и Core i7-7700K можно констатировать не особо большой эффект от наличия SMT, чем и объясняется лидерство i5-8600K, в эту же логическую схему можно включить разность баллов для Ryzen 3 1200 и Ryzen 5 1400.

LuxMark хорошо откликается на производительную систему памяти, потому здесь четыре канала у Core i7-6850K оказались предпочтительнее, чтобы выбороть первое место у всё той же группы преследователей, образовавшейся в табеле Cinebench. Но общий, суммарный балл в тесте заметно уравновесился из-за более чем весомого вклада в него (идентичной) видеоподсистемы наших стендов.

Итоги в Fire Strike стоит разобрать детально. На общий балл серьёзно влияет используемый процессор, так, самый мощный из нынешних тестовых экземпляров ожидаемо оказался на первом месте.

Ровными рядами — в зависимости от типа используемой платформы — выстроились итоги графических замеров. Аутсайдеры — системы с процессорами AM4, а лидеры — все платы с LGA1151.

Сценарий Physics замечательно реагирует на наличие технологии SMT. И всё же шесть реальных ядер стали быстрее, чем восемь «виртуальных», если рассматривать результаты Core i5-8600K и Core i7-7700K. При равных количествах ядер и потоков продукты AMD уступают процессорам Intel, очевидно, сказывается не такая высокая тактовая частота.

DiRT 3 необходим нам для анализа производительности подсистемы памяти. Отказ от кольцевой шины в Core i7-7820X нашёл отклик в результатах, пусть и небольшой. Но на фоне свежих Ryzen он выглядит точно лучше, не говоря уже классические процессоры, где такой тип шины давно не без успехов используется.

Низкие настройки качества при небольшом разрешении — таким способом процессорозависимость игры можно увеличить, хотя бы для анализа. Безапелляционным лидером в этом состязании стал разогнанный Core i5-8600K. Шесть реальных ядер и высокие оверклокерские возможности — вот и весь секрет успеха. Core i7-7820X формально обошёл менее скоростной Core i7-6850K, но, по правде говоря, большее число активных потоков ничем ему в Hitman: Absolution не помогло.

Возросшая нагрузка на видеоподсистему разом уравняла практически всех наших участников тестирования. Хотя и тут Core i5-8600K всё же выделяется, пусть и буквально символически.

Энергопотребление системы

Замеры выполнялись после прохождения всех прочих тестов в «устоявшемся» режиме компьютера при помощи прибора собственной разработки. Для создания нагрузки я выбрал тестовую дисциплину x265 HD Benchmark (2.1.0.4). Производился расчёт среднего значения потребления тестового стенда «от розетки» на протяжении цикла перекодирования, а затем, после завершения теста, ещё минуту замерялся уровень, когда система простаивала.

Разогнанные шесть ядер потребляют больше четырёх, а восемь — больше шести. Это вполне логично. Впрочем, результат потребления шестнадцатипоточного Core i7-7820X способен ошеломить, а потому я решил приготовить ещё один график, чтобы понять, куда же девается такое огромное количество энергии.

На самом деле всё оказалось достаточно прозаично. Все современные процессоры, так или иначе, находятся в одной условной группе эффективности, для контраста можно взглянуть на FX-6100. И всё же лучшим с точки зрения «полезных» растрат энергии стал Core i7-7700K, четыре ядра и SMT — вот его формула успеха. Этот тест был самым сложным с точки зрения подбора параметров разогнанных систем. Наверняка для других утилит картина будет отличаться.

Вывод

Последние годы аудитория энтузиастов была вынуждена следить за процессорами Intel, потому как развитие сектора, так или иначе, происходило именно силами их специалистов. А вот насколько успешно это было — мы оставим за скобками, поскольку каждый имеет собственное определение для этого понятия. В этом обзоре мы остановились на функционировании систем исключительно в режимах оверклокинга, хотя разработчики немало усилий потратили на энергоэффективность и развитие технологий ускорения — Turbo Boost насчитывает вот уже три поколения, плодом этих разработок мы пренебрегли. Каждый энтузиаст волен в свой способ настроить свою систему, пожелав (или нет) использовать сложную схему прибавки частоты, зависимой от: температуры, теплопакета процессора, степени нагрузки на систему. Также можно совершенно свободно подходить и к способам формирования напряжения на процессоре. При массированном разгоне большинство этих технологий затмеваются, поскольку те направлены скорее на поиск максимальной эффективности вычислений, а не предельную вычислительную мощность.

Скальпировать или нет? Использовать кулеры, готовые СЖО или собирать весь контур самому? Всё это также зависит от личных предпочтений владельца и будущих сценариев эксплуатации компьютера. Для ряда тестов из нашего списка наличие СЖО мало в чём пригодилось, равно как и скальпирование. Младшие (из нынешних) моделей CPU работают без надвигающегося перегрева под хорошим воздушным кулером даже в условиях их предельного разгона.

Компания AMD безусловно расшевелила процессорный рынок, точнее, позволила всем нам вспомнить про времена, когда конкуренция была жива. На сегодняшний день CPU от Intel всё ещё быстрее, и именно по этим причинам продукты AMD имеют более привлекательную стоимость. Всё может вскоре измениться, ведь уже на апрель оба лагеря готовятся презентовать новые продукты. У AMD это будут более быстрые процессоры, а ряд PCH начального уровня от Intel запустит продажи более доступных системных плат, тем самым сборка шестиядерного ПК будет стоить ещё дешевле.

Надеемся, после ознакомления с нашими материалами читатели смогут правильно сориентироваться в текущем положении дел на рынке.

www.overclockers.ua

AMD Ryzen 7 1800X. Дополнительное сравнение с Intel Core i7-6900K и Core i7-6850K

Совсем недавно мы провели тестирование новейшего процессора AMD Ryzen 7 1800X, который оказался достаточно неплохим решением, способным составить конкуренцию продуктам Intel. Да и в целом микроархитектура Zen, на базе которой построены CPU этого семейства, выглядит очень даже привлекательной благодаря быстрому контроллеру памяти, большому количеству вычислительных блоков и высокой интеграции различных современных интерфейсов. Но пока что слабая оптимизация со стороны операционной системы Windows 10 и программ в некоторых случаях не лучшим образом сказывается на производительности новинки.

Участники тестирования

В прошлый раз мы сравнивали последнюю разработку AMD с топовым решением Intel, который стоит в 3 раза дороже, а также с более доступной моделью. В тестировании не хватало прямых конкурентов для Ryzen 7 1800X — Core i7-6900K, обладающего также 8 ядрами и 16 потоками, и Core i7-6850K, предлагаемого практически по той же цене, что и новичок. После выхода основного материала нам все-таки удалось раздобыть на короткое время эти процессоры, и мы решили дополнить наше тестирование, чтобы оценить реальную расстановку сил на рынке.

В итоге собранные процессоры имели следующий вид:

Процессор AMD Ryzen 7 1800X Core i7-6950X Core i7-6900K Core i7-6850K Core i7-7700K
Ядро Summit Ridge Broadwell-E Broadwell-E Broadwell-E Kaby Lake
Разъем AM4 LGA2011-3 LGA2011-3 LGA2011-3 LGA1151
Техпроцесс, нм 14 14 14 14 14
Число ядер (потоков) 8 (16) 10 (20) 8 (16) 6 (12) 4 (8)
Номинальная частота, МГц 3600 3000 3200 3600 4200
Частота Turbo boost, МГц 4000 3500 (4000)* 3700 (4000)* 3800 (4000)* 4500
L1-кэш, Кбайт 8 x (32+64) 10 x (32+32) 8 x (32+32) 6 x (32+32) 4 x (32+32)
L2-кэш, Кбайт 8 x 512 10 x 256 8 x 256 6 x 256 256 x 4
L3-кэш, Мбайт 16 (8+8) 25 20 15 8
Графическое ядро Intel HD Graphics 630
Частота графического ядра, МГц 1150
Число унифицированных шейдерных процессоров 24
Поддерживаемый тип памяти DDR4-2666DDR4-2400 DDR4-2400DDR4-2133 DDR4-2400DDR4-2133 DDR4-2400DDR4-2133 DDR3L-1600DDR4-2400
TDP, Вт 95 140 140 140 91
Рекомендованная стоимость, $ 499 1723 1089 617 339

Тестовый стенд

Для измерения быстродействия центрального процессора AMD Ryzen 7 1800X тестовый стенд с прошлого раза немного изменил свою конфигурацию, а именно была использована другая материнская плата:

  • материнская плата: ASRock Fatal1ty AB350 Gaming K4 (Socket AM4, ATX, AMD B350, UEFI Setup 1.42 Beta);
  • кулер: be quiet! Silent Loop 280mm (2x140 мм, 1600 об/мин);
  • термопаста: Noctua NT-h2;
  • оперативная память: G.Skill F4-3200C15D-16GTZKO (2x8 ГБ, DDR4-3200, CL15-15-15-32-2T);
  • видеокарта: ASUS POSEIDON-GTX980TI-P-6GD5 (GeForce GTX 980 Ti);
  • накопитель: Kingston SSDNow KC400 512GB (512 ГБ, SATA 6Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 10 64 bit;
  • драйвер чипсета: AMD Crimson ReLive Edition 17.2.1;
  • драйвер видеокарты: NVIDIA GeForce 378.66.

Эта конфигурация использовалась исключительно для реальных игровых приложений, так как с момента выхода материала Counter Strike: Global Offensive и Grand Theft Auto V обновились. В таком перетесте использовалось лишь два режима — с настройками по умолчанию и памятью DDR4-2400 и с разгоном до 4 ГГц и памятью DDR-3200, при этом в последнем случае парковка ядер была отключена. Остальные режимы нами были изучены ранее, и они вряд ли бы внесли хоть какие-то изменения в расстановку сил. В других приложениях использовались старые результаты, полученные при таких условиях (описание каждого режима можно найти в прошлом материале):

  • «Ryzen 7 1800X 4,0/3200/8/SMT/Poff» — разгон до 4 ГГц, память 3200 МГц, 16-17-17-17-39-1Т, многопоточность включена, парковка ядер отключена;
  • «Ryzen 7 1800X 4,0/2933/8/SMT/Poff» — разгон до 4 ГГц, память 2933 МГц, 16-17-17-17-39-1Т, многопоточность включена, парковка ядер отключена;
  • «Ryzen 7 1800X 4,0/2400/8/SMT» — разгон до 4 ГГц, память 2400 МГц, 16-17-17-17-39-1Т, многопоточность включена;
  • «Ryzen 7 1800X 4,0/2933/8/SMToff» — разгон до 4 ГГц, память 2933 МГц, 16-17-17-17-39-1Т, многопоточность отключена;
  • «Ryzen 7 1800X 4,0/2933/2+2/SMT/Poff» — разгон до 4 ГГц, память 2933 МГц, 16-17-17-17-39-1Т, ядра 2+2 и кэш 16 МБ, многопоточность включена, парковка ядер отключена;
  • «Ryzen 7 1800X 4,0/2933/4+0/SMT/Poff» — разгон до 4 ГГц, память 2933 МГц, 16-17-17-17-39-1Т, ядра 4+0 и кэш 8 МБ, многопоточность включена, парковка ядер отключена;
  • «Ryzen 7 1800X 4,0/2933/4+0/SMToff» — разгон до 4 ГГц, память 2933 МГц, 16-17-17-17-39-1Т, ядра 4+0 и кэш 8 МБ, многопоточность отключена;
  • «Ryzen 7 1800X def/2933/8/SMT/Poff» — дефолт, память 2933 МГц, 16-17-17-17-39-1Т, многопоточность включена, парковка ядер отключена;
  • «Ryzen 7 1800X def/2933/8/SMT» — дефолт, память 2933 МГц, 16-17-17-17-39-1Т, многопоточность включена;
  • «Ryzen 7 1800X def/2666/8/SMT» — дефолт, память 2666 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Ryzen 7 1800X def/2400/8/SMT» — дефолт, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена.

Конкуренты, а именно Core i7-6950X, Core i7-6900K и Core i7-6850K тестировались на такой конфигурации:

  • материнская плата: ASRock Fatal1ty X99 Professional Gaming i7 (Socket LGA2011-3, ATX, Intel X99, UEFI Setup P1.40);
  • кулер: be quiet! Silent Loop 280mm (2x140 мм, 1600 об/мин);
  • термопаста: Noctua NT-h2;
  • оперативная память: HyperX Fury HX424C15FBK4/32 (4x8 ГБ, DDR4-2400, CL15-15-15-32-2T);
  • видеокарта: ASUS POSEIDON-GTX980TI-P-6GD5 (GeForce GTX 980 Ti);
  • накопитель: Kingston SSDNow KC400 512GB (512 ГБ, SATA 6Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 10 64 bit;
  • драйвер чипсета: Intel Management Engine 11.6.0.1030, Turbo Boost Max 3.0 1.0.0.1029, Intel INF Update Utility 10.1.1.42;
  • драйвер видеокарты: NVIDIA GeForce 378.66.

Для Core i7-7700K был собран следующий стенд:

  • материнская плата: ASRock Fatal1ty Z270 Gaming K4 (Socket LGA1151, ATX, Intel Z270, UEFI Setup P1.10);
  • кулер: be quiet! Silent Loop 280mm (2x140 мм, 1600 об/мин);
  • термопаста: Noctua NT-h2;
  • оперативная память: HyperX Fury HX424C15FBK4/32 (4x8 ГБ, DDR4-2400, CL15-15-15-32-2T);
  • видеокарта: ASUS POSEIDON-GTX980TI-P-6GD5 (GeForce GTX 980 Ti);
  • накопитель: Kingston SSDNow KC400 512GB (512 ГБ, SATA 6Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 10 64 bit;
  • драйвер чипсета: Intel Management Engine 11.6.0.1030, Turbo Boost Max 3.0 1.0.0.1029, Intel INF Update Utility 10.1.1.42;
  • драйвер видеокарты: NVIDIA GeForce 378.66.

Решения Intel работали в следующих режимах:

  • «Core i7-6950X 4,0/2400/10/SMT» — разгон до 4 ГГц, кэш до 3,5 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6950X def/2400/10/SMT » — дефолт, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6900K 4,0/2400/8/SMT» — разгон до 4 ГГц, кэш до 3,3 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6900K def/2400/8/SMT » — дефолт, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6850K 4,2/2400/6/SMT» — разгон до 4,2 ГГц, кэш до 3,5 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6850K 4,0/2400/6/SMT» — разгон до 4 ГГц, кэш до 3,5 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-6850K def/2400/6/SMT » — дефолт, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-7700K 4,6/2400/4/SMT» — разгон до 4,6 ГГц, кэш до 4,3 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-7700K def/2400/4/SMT » — дефолт, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена;
  • «Core i7-7700K 4,0/2400/4/SMT » — даунклокинг до 4 ГГц, кэш 3,7 ГГц, память 2400 МГц, 16-16-16-16-36-1Т, многопоточность включена.

В реальных игровых приложениях процессор Core i7-6950X уже не участвовал, так как был задействован для другого материала. Список тестовых приложений покинул PCMark 8 в связи с требованием большого количества времени на его прохождение, при этом особой картины «кто быстрее» он не отражал:

  • AIDA64 5.80.4089 beta (Cache & Memory benchmark);
  • Cinebench R15 64bit;
  • Corona 1.3 Benchmark;
  • TrueCrypt 7.2 (встроенный тест);
  • WinRAR 5.40 (встроенный тест);
  • 7-Zip 16.04 (встроенный тест);
  • HWBot Bencmark x265 v2.0.0;
  • Futuremark 3DMark;
  • Counter Strike: Global Offensive;
  • Deus Ex: Mankind Divided;
  • Grand Theft Auto V.

Результаты тестирования

Синтетика и прикладное ПО

Итак, в AIDA64 ничего нового мы не увидели, четырехканальный контроллер памяти позволяет демонстрировать чуть ли не полуторакратную разницу в сравнении с оппонентами. Если при чтении и копировании младшие модели топового сегмента от Intel ведут себя скромнее, чем Core i7-6950X, то уже при записи и по времени доступа они ведут себя абсолютно одинаково. Лишь разгон памяти у Ryzen 7 1800X хоть как-то позволяет приблизиться по показателям чтения к Core i7-6850K.

Прикладное ПО

В однопоточном тесте Cinebench R15 как всегда решает частота, но при активации всех потоков только с разгоном Core i7-6850K смог догнать соперника, работающего в номинале! Ryzen 7 1800X и дальше чувствует себя превосходно, будучи производительнее более дорогих конкурентов.

В Corona новинка от AMD демонстрирует хорошую скорость просчета сцены на фоне продуктов Intel, лишь после разгона она немного отстает от Core i7-6900K.

Шифрование тяжелее дается всем, кроме Ryzen 7 1800X и Core i7-6950X. Разгон Core i7-6900K лишь приблизил к показателям решения конкурента, работающего в номинале.

В WinRAR высокоуровневые «аутсайдеры» Intel отыгрались по полной. Новичок отстает от Core i7-6850K, но не так серьезно, как от старших моделей серии Core i7.

Ryzen 7 1800X в 7-Zip уже взял реванш и с легкостью обошел дорогих оппонентов, немного уступив разогнанному Core i7-6900K.

С кодированием видео высокой четкости у новинки AMD также никаких проблем нет — она запросто обходит своего ценового конкурента и практически вровень идет с Core i7-6900K.

Тестирование в 3D-играх

В пакете 3DMark в зависимости от теста Ryzen 7 1800X либо производительнее своих оппонентов, либо от них отстает.

После обновления CS:GO результаты процессоров Intel немного подтянулись, но у Ryzen 7 1800X, наоборот снизились, хоть и не значительно. Для игры Core i7-6850K выглядит вполне неплохо.

Deus Ex: Mankind Divided специфическая игра, бенчмарк которой по непонятным причинам на платформе Intel демонстрирует скачки минимального fps. В нем было проведено несколько прогонов, вон выходящие результаты отсеивались и засчитывались более-менее повторяющиеся. В конечном итоге получилось, что с максимальными настройками, а также со средним качеством, новичок не сильно отстает от конкурентов, но со снижением разрешения отставание уже заметно. Плюс AMD тут в том, что периодические просадки fps минимальны, тогда как на том же Core i7-7700K можно было получить один раз 38 кадров, а следующий — 81.

Для GTA5 с прошлого раза ничего не изменилось. Относительно доступный «игровой» процессор Intel хорош по среднему fps, но минимальный у него на уровне не разогнанного конкурента. Более старшие модели, естественно, производительнее.

Если исследовать минимальный fps, то окажется, что Core i7-7700K меньше подходит для плавного геймплея, чем Ryzen 7 1800X. А с разгоном последний не так сильно отстает от чуть более дорогого конкурента.

Выводы

Пожалуй, именно этой части тестирования не хватало в прошлый раз, где можно было сравнить конкурентов, как по количеству ядер, так и по цене. Ryzen 7 1800X в некоторых прикладных программах запросто обходит Core i7-6850K и даже в два раза более дорогую модель Core i7-6900K. В других приложениях у них паритет, а в некоторых он значительно отстает. В совокупности новинка AMD выглядит привлекательнее оппонентов за счет стоимости, и вполне возможно, что Intel в будущем пересмотрит ценовую политику относительно старших моделей своих процессоров.

С играми чуть сложнее, так как Ryzen 7 1800X не всегда удается конкурировать с более доступным Core i7-7700K. Но у платформы Intel присутствуют провалы по минимальному количеству кадров в секунду и плавная картинка на AMD куда приятнее для глаз, чем высокий уровень среднего fps. Если сравнивать с Core i7-6850K, то новинка медленнее настолько, насколько его дешевле. В итоге имеем хороший процессор для работы, на котором можно даже неплохо поиграть.

www.overclockers.ua

Разгон и сравнение процессоров. Часть II: решения от Intel — Skylake-X, Broadwell-E, Coffee Lake-S, Kaby Lake-S и Skylake-S

В качестве тестов использовались следующие приложения:

  • AIDA64 5.95.4531 и 5.95.4544 (Cache & Memory benchmark, BenchDLL 4.3.770-x64);
  • Super PI 1.5 XS;
  • wPrime 2.10;
  • x265 HD Benchmark (2.1.0.4);
  • MAXON CINEBENCH R15;
  • POV-Ray 3.7.0;
  • LuxMark v3.1;
  • Futuremark 3DMark 13 (2.4.4180 — для LGA2066 и LGA2011-3, 2.4.4264 — для LGA1151);
  • DiRT 3 Complete Edition (1.2.0.0);
  • Hitman: Absolution (1.0.447.0).

Все обновления для ОС, доступные в Центре Обновления Windows, были инсталлированы. Сторонние антивирусные продукты не привлекались, тонкие настройки системы не производились, размер файла подкачки определялся системой самостоятельно.

Результаты тестирования

Реализация двухканальной памяти у процессоров Intel позволяет получить результаты выше, чем у соперника, а четырёхканальная схема была быстрее двухканальной. Анализ латентности ещё интереснее. Самым быстрым оказался четырёхядерный ЦП, опередив шестиядерный, к тому же работающий быстрее него. Ячеистая структура Core i7-7820X продемонстрировала самый худший показатель (среди продуктов Intel), хотя в первых трёх замерах равных такой системе не было.

Скорость расчёта числа Pi непреклонна — чем выше частота, тем быстрее процесс происходит. Потому результаты тут достаточно предсказуемые.

wPrime отлично реагирует на прирост как в числе ядер, так и в количестве потоков. Высокая частота также понадобится. Из-за последнего атрибута процессоры Intel оказываются впереди преследователей из лагеря AMD. Однако в скором будущем есть все основания для их плотного соперничества.

C перекодированием видео дело вновь обстоит лучше у продуктов Intel. На этом тесте мы ещё раз подробно остановимся в конце этого материала. По скорости работы шестнадцать потоков в системе с Core i7-7820X выглядят более чем уверенно.

Весьма любопытная картина получилась в Cinebench. Шесть быстрых ядер без Hyper-Threading у Core i5-8600K нагнали куда более медленные с точки зрения тактовой частоты двенадцать потоков у Core i7-6850K. Очень близко к ним находится соперник в лице разогнанного Ryzen 5 1600.

Рендеринг сцены в POV-Ray значительно лучше проходит на Core i5-8600K, два преследователя из прошлого теста заметно отстали. По сопоставлению выступлений Core i5-6600K и Core i7-7700K можно констатировать не особо большой эффект от наличия SMT, чем и объясняется лидерство i5-8600K, в эту же логическую схему можно включить разность баллов для Ryzen 3 1200 и Ryzen 5 1400.

LuxMark хорошо откликается на производительную систему памяти, потому здесь четыре канала у Core i7-6850K оказались предпочтительнее, чтобы выбороть первое место у всё той же группы преследователей, образовавшейся в табеле Cinebench. Но общий, суммарный балл в тесте заметно уравновесился из-за более чем весомого вклада в него (идентичной) видеоподсистемы наших стендов.

Итоги в Fire Strike стоит разобрать детально. На общий балл серьёзно влияет используемый процессор, так, самый мощный из нынешних тестовых экземпляров ожидаемо оказался на первом месте.

Ровными рядами — в зависимости от типа используемой платформы — выстроились итоги графических замеров. Аутсайдеры — системы с процессорами AM4, а лидеры — все платы с LGA1151.

Сценарий Physics замечательно реагирует на наличие технологии SMT. И всё же шесть реальных ядер стали быстрее, чем восемь «виртуальных», если рассматривать результаты Core i5-8600K и Core i7-7700K. При равных количествах ядер и потоков продукты AMD уступают процессорам Intel, очевидно, сказывается не такая высокая тактовая частота.

DiRT 3 необходим нам для анализа производительности подсистемы памяти. Отказ от кольцевой шины в Core i7-7820X нашёл отклик в результатах, пусть и небольшой. Но на фоне свежих Ryzen он выглядит точно лучше, не говоря уже классические процессоры, где такой тип шины давно не без успехов используется.

Низкие настройки качества при небольшом разрешении — таким способом процессорозависимость игры можно увеличить, хотя бы для анализа. Безапелляционным лидером в этом состязании стал разогнанный Core i5-8600K. Шесть реальных ядер и высокие оверклокерские возможности — вот и весь секрет успеха. Core i7-7820X формально обошёл менее скоростной Core i7-6850K, но, по правде говоря, большее число активных потоков ничем ему в Hitman: Absolution не помогло.

Возросшая нагрузка на видеоподсистему разом уравняла практически всех наших участников тестирования. Хотя и тут Core i5-8600K всё же выделяется, пусть и буквально символически.

Энергопотребление системы

Замеры выполнялись после прохождения всех прочих тестов в «устоявшемся» режиме компьютера при помощи прибора собственной разработки. Для создания нагрузки я выбрал тестовую дисциплину x265 HD Benchmark (2.1.0.4). Производился расчёт среднего значения потребления тестового стенда «от розетки» на протяжении цикла перекодирования, а затем, после завершения теста, ещё минуту замерялся уровень, когда система простаивала.

Разогнанные шесть ядер потребляют больше четырёх, а восемь — больше шести. Это вполне логично. Впрочем, результат потребления шестнадцатипоточного Core i7-7820X способен ошеломить, а потому я решил приготовить ещё один график, чтобы понять, куда же девается такое огромное количество энергии.

На самом деле всё оказалось достаточно прозаично. Все современные процессоры, так или иначе, находятся в одной условной группе эффективности, для контраста можно взглянуть на FX-6100. И всё же лучшим с точки зрения «полезных» растрат энергии стал Core i7-7700K, четыре ядра и SMT — вот его формула успеха. Этот тест был самым сложным с точки зрения подбора параметров разогнанных систем. Наверняка для других утилит картина будет отличаться.

Вывод

Последние годы аудитория энтузиастов была вынуждена следить за процессорами Intel, потому как развитие сектора, так или иначе, происходило именно силами их специалистов. А вот насколько успешно это было — мы оставим за скобками, поскольку каждый имеет собственное определение для этого понятия. В этом обзоре мы остановились на функционировании систем исключительно в режимах оверклокинга, хотя разработчики немало усилий потратили на энергоэффективность и развитие технологий ускорения — Turbo Boost насчитывает вот уже три поколения, плодом этих разработок мы пренебрегли. Каждый энтузиаст волен в свой способ настроить свою систему, пожелав (или нет) использовать сложную схему прибавки частоты, зависимой от: температуры, теплопакета процессора, степени нагрузки на систему. Также можно совершенно свободно подходить и к способам формирования напряжения на процессоре. При массированном разгоне большинство этих технологий затмеваются, поскольку те направлены скорее на поиск максимальной эффективности вычислений, а не предельную вычислительную мощность.

Скальпировать или нет? Использовать кулеры, готовые СЖО или собирать весь контур самому? Всё это также зависит от личных предпочтений владельца и будущих сценариев эксплуатации компьютера. Для ряда тестов из нашего списка наличие СЖО мало в чём пригодилось, равно как и скальпирование. Младшие (из нынешних) моделей CPU работают без надвигающегося перегрева под хорошим воздушным кулером даже в условиях их предельного разгона.

Компания AMD безусловно расшевелила процессорный рынок, точнее, позволила всем нам вспомнить про времена, когда конкуренция была жива. На сегодняшний день CPU от Intel всё ещё быстрее, и именно по этим причинам продукты AMD имеют более привлекательную стоимость. Всё может вскоре измениться, ведь уже на апрель оба лагеря готовятся презентовать новые продукты. У AMD это будут более быстрые процессоры, а ряд PCH начального уровня от Intel запустит продажи более доступных системных плат, тем самым сборка шестиядерного ПК будет стоить ещё дешевле.

Надеемся, после ознакомления с нашими материалами читатели смогут правильно сориентироваться в текущем положении дел на рынке.

Page 2

Системы среднего уровня базировались на таких компонентах:

  • материнская плата №1: ASUS ROG Maximus X Formula (UEFI 0220);
  • материнская плата №2: ASUS ROG Maximus IX Apex (UEFI 0801);
  • кулер: Cryorig R1 Ultimate;
  • термоинтерфейс: Noctua NT-h2;
  • память: G.Skill TridentZ F4-3200C16D-16GTZB (2x8 ГБ, 3200 МГц, 16-18-18-38-2T, 1,35 В);
  • видеокарта: MSI GTX 780Ti Gaming 3G (GeForce GTX 780Ti);
  • накопитель: Silicon Power Slim S55 (240 ГБ, SATA 6 Гбит/с, AHCI mode);
  • блок питания: SilverStone SST-ST65F-PT (650 Вт);
  • операционная система: Windows 10 Pro x64 (10.0.16299.248);
  • драйверы: Intel Chipset Software Installation Utility (10.1.1.44), Intel Management Engine Interface (11.7.0.1058), OpenCL Runtime for Intel Core and Intel Xeon Processors (16.1.2), Intel Rapid Storage Technology Driver (15.8.1.1007), GeForce 381.65 (22.21.13.8165), PhysX 9.17.0524.

Разгон Core i5-8600K. Методика

Мы работали с нескальпированным инженерным образцом процессора, его батч — L717B638.

В отличие от только что рассмотренных моделей, настольные варианты ЦП обладают лишь второй версией Turbo Boost. Нет никаких «особых» ядер, индивидуальной настройки их работы потому также нет. На бумаге всё выглядит достаточно прозаично: однопоточный сценарий заставит процессор разогнаться до 4,3 ГГц, а с ростом числа вычислительных потоков ускорение станет понемногу иссякать, остановившись на границе 4,1 ГГц — для шести активных ядер. Впрочем, достаточно часто производители системных плат отступают от подобных рекомендаций, и уже с начальными настройками этот ЦП будет работать с формулой 4,3 ГГц для любых сценариев. Именно так дело и обстояло с первой материнской платой, которая побывала в нашей лаборатории — ASUS ROG Strix Z370-E Gaming, где мы впервые изучали возможности Core i5-8600K.

Используемая в нынешних испытаниях плата уже не была столь инициативной, придерживаясь общих требований к работе. Лишь значение BCLK было слегка увеличенным. Из-за этого частота в простое равнялась 803,7 МГц вместе с 0,8 вольтами.

В простых сценариях действует напряжение уровня 1,12 В, кольцевая шина разгоняется до 4 ГГц.

Увеличение нагрузки на CPU приводит и к росту напряжения — до 1,152 В, частота будет чуть выше 4,1 ГГц.

Специалисты компании Intel создали ПО для увеличения продуктивности ПК, это XTU — Intel Extreme Tuning Utility. Более детально о нём можно узнать из раздела про разгонные возможности Core i7-7820X. Вкратце: там предусмотрена возможность «на лету» менять множители и напряжение, однако шаг прироста частоты оказывается весьма большим — 100 МГц, если опираться на стандартное значение BCLK. Для ряда случаев ею вполне уместно пользоваться, но сегодня я предпочту фирменное ПО для материнских плат (TurboV Core) от инженеров ASUS, именно по причине открытого тут доступа к дробным значениям опорной частоты. У других вендоров, как правило, есть пусть и не настолько развитые утилиты, но в них множитель ЦП и (или) базовую частоту тоже можно формировать в режиме реального времени.

Для первичного исследования разгонного потенциала я использовал метод, уже описанный в первой части этого цикла сравнений (для процессоров AMD Ryzen). Напомню его суть. В качестве постоянной нагрузки на ЦП привлекался сценарий wPrime «1024M», шаг частоты (опорной или самого ЦП) постепенно увеличивался, ровно до момента, когда система теряла стабильность. Такой метод не подразумевает наличие какой-либо действительной стабильности, но как экспресс-оценка возможностей вполне неплох. Следует помнить про указание правильного числа используемых потоков в настройках. В роли начальных отметок я выбрал 4300 МГц и 1,25 В. Ещё сразу следует правильно подобрать профиль LLC, чтобы уровень напряжения был близок к задуманному. После появления первого BSOD питающее напряжение я повышал ещё на 0,05 В, затем испытания стартовали с частотной отметки, когда стабильность ещё сохранялась в ходе прошлого цикла. В качестве итога получились такие цифры:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-8600K 1,25 1,264 5253
Core i5-8600K 1,3 1,312 5303
Core i5-8600K 1,35 1,36 5352
Core i5-8600K 1,4 ≤ 1,424 5366

Среди профилей LLC у стендовой платы не нашлось такого, с которым стабилизация напряжения у CPU оказалась бы идеальной. С выбранным имел место лёгкий прирост относительно установок.

Внизу есть скриншоты, соответствующие минутным временным отрезкам, чтобы была возможность оценить степень его истинной стабильности (именно под эту стадию экспериментов, а дольше проводить их не имело особого смысла). Там же имеются температурные сведения каждого из ядер.

Поиск стабильности на отметке 5,3 ГГц является одной из категорий наших тестов разгонных возможностей материнских плат. Между собой все они отличаются необходимым и достаточным уровнем процессорного напряжения. Безусловно, в эту категорию не попадает LinX или другие стресс-утилиты, где нагрев CPU значительно выше, каждый пользователь в праве сам решить какую из вершин его процессор должен покорить и как именно это событие фиксировать, чтобы считать свершившимся.

Перед тем, как заняться окончательной стабилизацией системы, я разогнал набор памяти. Мы специально использовали ту же пару модулей, что и в тестах AMD Ryzen. Здесь получилось форсировать такой режим — 3733 МГц с набором задержек 17-18-18-39-2T. Вспомогательные напряжения не повышались вообще, а на модулях действовали 1,48 В. Заслуги не лежат в комбинации «отобранного» CPU и «особой» материнской платы. Чуть больший рубеж этот же комплект покорил с процессором прошлого поколения на системе с основой базового уровня — ASRock Z270 Pro4.

И последний вопрос, который хотелось бы затронуть — частота Uncore. В ходе экспериментов я провел ряд замеров, предлагаю изучить их с целью поиска ответа на вопрос, какой же она должна быть при условии разгона ЦП.

102x39=3978 (МГц)

102x43=4386 (МГц)

102x46=4692 (МГц)

102x49=4998 (МГц)

102x52=5304 (МГц)

Особого, яркого эффекта от разгона этого блока при установленных нами частотах ЦП и ОЗУ я не увидел. Но, как показала практика, подобный «разгон» не требует значимых вспомогательных действий (например, роста каких-либо напряжений, даже второстепенных). Небольшие проблески в улучшении работы памяти всё же можно проследить, особенно если поглядывать на латентность, потому для финальной конфигурации стенда я выбрал классические «минус три» от множителя ЦП.

Теперь, когда все важные частоты определены, можно заняться поиском стабильных рабочих напряжений. Главным образом, это касается процессорного. Остальные фактически не зависели от типа применяемых нагрузочных сценариев. Как и с процессорами AMD, самым требовательным тестом стал x265 HD Benchmark 2.1.0.4.

1,392 В — с этим действующим значением не было проблем как со стабильностью системы, так и со всеми тестовыми утилитами. Перегрева ЦП также не происходило, а он, напомню, не был скальпированным. Не лишним будет напомнить ещё раз — этот режим работы не затрагивает проверку утилитами вроде LinX или Prime95. C ними итоговая комбинация частоты, температуры и напряжения будет уже совершенно другой.

Как и в случае с процессорами для сегмента HEDT, рассмотренными выше, использовалась единая формула частоты для всех вычислительных ядер. Мультипоточным является большинство наших тестов, потому там отличий не будет, а вот для однопоточных сценариев (у каждого из пользователей — свои требования к ПК) оверклокерский рубеж мог бы стать ещё выше, но для этого потребуется привлечь в схему настройки набор из множителей для Turbo Boost. Также для облегчения стабилизации системы метод установки напряжения процессора был выбран с фиксируемым значением, тогда как существует еще как минимум пара способов, но они больше помогут сэкономить немного энергии в простое, а не быстрее подобрать нужное значение (невысокое, но достаточное) напряжения для CPU. Здесь у владельца также появляется ещё одно поле для выбора. Как и с частотой, нашей целью была именно стабильная работа системы в ряде приложений, а не максимальная энергоэффективность разогнанного ПК.

Page 3

Эта модель процессоров была одной из самых покупаемых по причине фактической доминации в сегменте настольных ПК. Даже в 2018 году немалое число продаваемых готовых сборок опирается именно на этот ЦП. Для замеров привлекалась инженерная версия с батчем L631F645, без осуществления скальпирования.

Возможности линейки кристаллов Kaby Lake-S описаны в обзоре младшей модели — Core i5-7600K. Весомых отличий от Coffee Lake-S нет, потому методика разгона будет такой же. С начальными настройками частота CPU равна 803,9 МГц (вновь играет роль слегка повышенная базовая), напряжение составляет 0,704 В.

Рост частоты с однопоточными сценариями сформирует 4526 МГц, у напряжения уровень достигал 1,264 В.

Модель используемой материнской платы может быть причислена к тем, где есть явное вмешательство в штатные частотные формулы, потому как многопоточные задания выполнялись при неснижаемой частоте. Рост напряжения составил 1,28 В.

Роль утилиты, где вносились правки в текущую конфигурацию системы «на лету» выполнила всё та же ASUS TurboV Core.

На этот раз уровень LLC я выбрал чуть ниже — Level 5. Прочие параметры были в точности такими, как в прошлой главе.

Значения напряжений и температур ядер в ходе экспресс-тестов отображены на скриншотах ниже.

Финальный результат испытаний имеет следующий вид:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i7-7700K 1,25 1,248 4894
Core i7-7700K 1,3 ≤ 1,312 4923
Core i7-7700K 1,35 1,36 4953
Core i7-7700K 1,4 1,408 5004

Схема работы ОЗУ была определена разделом выше, остаётся вопрос кольцевой шины. Установить схему полностью симметрично с множителем ЦП нельзя, реальный множитель оказывается на три пункта ниже. Несколько возможных вариантов конфигурации системы показали такие результаты:

100x40=4000 (МГц)

100x43=4300 (МГц)

100x46=4600 (МГц)

Лучше всего виден прирост скорости работы по показателям кэша L3, но и в латентности памяти можно заметить отклик от оверклокинга. Потому, как и принято, будем в работе Uncore использовать практику «минус три» пункта от множителя ЦП. В качестве наиболее сложного теста из нашей программы снова использовался x265 HD Benchmark 2.1.0.4.

Необходимым и достаточным напряжением для частоты 4,9 ГГц стали 1,344 вольт. Нескальпированный CPU в случае с wPrime грелся не больше, чем 79 °С, для других, более тяжёлых утилит, очевиден эдакий «запас», до активации троттлинга в ходе наших замеров быстродействия дело не доходило.

Чтобы стабилизировать работу памяти со схемой 3733 МГц вместе c 17-18-18-39-2T, потребовалось выбрать для переменной DRAM Voltage 1,45 В. Однако здесь более интересна второстепенная переменная tCWL (CAS Write Latency). Рост вспомогательных напряжений каким-то образом её менял, вводя систему в состояние невозможности прохождения POST. Потому вместе с CPU IO Voltage (1,15 В) и SA Voltage (1,1 В), я фиксировал «16» в качестве постоянного значения.

Фактические уровни этих напряжений были больше — так отреагировала на установки материнская плата.

Разгон Core i5-6600K

Пожалуй, этот «четырёхядерник» можно назвать последним из числа активно покупающихся энтузиастами, потому как владельцев Core i5-7600K найти уже действительно тяжело. Разгонный потенциал ЦП серьёзно отличался от образца к образцу, превращая приобретение в настоящую лотерею. У нас участником оказался инженерный экземпляр с батчем L512C501, который тоже не скальпировался.

Работа в стоке и с разгоном при участии разной оперативной памяти уже нами рассматривалась, об этом упоминалось во вступлении. Сконцентрируемся на режиме работы именно в этот раз. В бездейственном состоянии частота равна 803,7 МГц при напряжении 0,88 В.

Из-за завышенной BCLK, частота с однопоточной нагрузкой слегка превысит 3,9 ГГц, напряжение будет доходить до 1,312 В.

Равно как и с Core i7-7700K, плата вмешивается в естественный ход вещей и меняет формулу работы CPU при использовании четырёх потоков — величина будет такой же, как с одним потоком. Напряжение вырастет до 1,344 В.

Методика экспресс-разгона останется неизменной: будем использовать утилиту ASUS TurboV Core, стартовой частотой выставим 4300 МГц. Профиль LLC такой же, как и разделом выше.

Выбранный Level 5 обеспечит лёгкое превышение уровня напряжения относительно установленной отметки. О нагреве процессора при нагрузке посредством wPrime также можно судить по сделанным скриншотам.

Удалось получить следующие результаты:

Модель Напряжение в UEFI, В CPU Core (действующее), В Частота до сбоя wPrime, МГц
Core i5-6600K 1,25 1,264 4618
Core i5-6600K 1,3 1,312 4659
Core i5-6600K 1,35 1,36 4761
Core i5-6600K 1,4 1,408 4788

Для полной картины, здесь тоже проведём анализ эффекта от повышения частоты кольцевой шины.

100x38=3800 (МГц)

100x41=4100 (МГц)

100x44=4400 (МГц)

100x47=4700 (МГц)

Оказалось, на используемой материнской плате можно установить множитель Uncore идентично с выбранным для процессора. Как показал быстрый анализ быстродействия, организованный при содействии AIDA64, прок есть даже от самого крайнего значения. Дополнительных усилий по стабилизации системы с ним не требуется, потому для тестов мы остановились на частоте 4700 МГц. Как и прежде, самой требовательной утилитой к подбору переменных при оверклокинге стал x265 HD Benchmark (2.1.0.4).

Испытания в ходе работы ЦП на частоте 4,7 ГГц вместе с разогнанными Uncore и DRAM помогли выяснить необходимый и достаточный уровень процессорного напряжения — 1,344 В. Нагрев CPU при использовании wPrime совершенно скромный, картина же происходящего при запуске LinX и других тяжёлых сценариев для системы будет, конечно, совсем иной. Но для наших запланированных тестов скальпирование мало в чём бы помогло, равно как и привлечение СЖО.

Схема работы памяти не менялась — 3733 МГц при конфигурации задержек 17-18-18-39-2T. Напряжение на модулях устанавливалось равным 1,45 В, CPU IO и SA выставлялись на уровень 1,1 В. Всё так же нужно было фиксировать tCWL на отметке 16.

В реальности все эти напряжения слегка превышали определённый для них уровень.

www.overclockers.ua


Смотрите также