Маршрутизаторы 2 уровня


Коммутатор уровня 2 vs Коммутатор уровня 3: В чём разница?

Официальный Сайт FS 2018-08-08

Как правило, если вы хотите подключить все сетевые и клиентские устройства к сети, коммутатор уровня 2 является одним из основных, наиболее подходящих для этой цели устройством. По мере увеличения разнообразия сетевых приложений и увеличения количества конвергентных сетей новый сетевой коммутатор уровня 3, эффективно используется как в центрах обработки данных, так и в комлексных корпоративных сетях, коммерческих приложениях и в более сложных клиентских проектах.

Что такое коммутатор уровня 2?

Коммутатор уровня 2 (Layer2 или L2) предназначен для соединения нескольких устройств локальной вычислительной сети (LAN) или нескольких сегментов данной сети. Коммутатор уровня 2 обрабатывает и регистрирует МАС–адреса поступающих фреймов, осуществляет физическую адресацию и управления потоком данных (VLAN, мультикаст фильтрация, QoS).

Термины ‘’Уровень 2’’ & ‘’Уровень 3’’ изначально получены из Протокола взаимодействия открытых сетей (OSI), который является одной из основных моделей, используемых для описания и объяснения принципов работы сетевых коммуникаций. Модель OSI определяет семь уровней взаимодейтсвия систем: прикладной уровень, представительский уровень, сеансовый уровень, транспортный уровень, сетевой уровень, уровень канала передачи данных (канальный уровень) и физический уровень, среди которых сетевой уровень - уровень 3, а уровень канала передачи данных - уровень 2.

Рисунок 1: Уровень 2 и Уровень 3 в Протоколе взаимодействия открытых сетей (OSI).

Уровень 2 обеспечивает прямую передачу данных между двумя устройствами в локальной сети. При работе коммутатор уровня 2 сохраняет таблицу MAC-адресов, в которой обрабатываются и регистрируются MAC-адреса поступающих фреймов и запоминается оборудование, подключаемое через порт. Массивы данных переключаются в MAC-адресах только внутри локальной сети, что позволяет сохранять данные только в пределах сети. При использовании коммутатора уровня 2 возможно выбрать определенные порты коммутатора для управления потоком данных (VLAN). Порты, в свою очередь, находятся в разных подсетях уровня 3.

Что такое коммутатор уровня 3?

Коммутаторы уровня 3 (Layer 3 или L3) фактически являются маршрутизаторами, которые реализуют механизмы маршрутизации (логическая адресация и выбор пути доставки данных (маршрута) с использованием протоколов маршрутизации (RIP v.1 и v.2, OSPF, BGP, проприетарные протоколы маршрутизации и др.) не в программном обеспечении устройства, а с помощью специализированных аппаратных средств (микросхем).

Маршрутизатор является наиболее распространенным сетевым устройством, относящимся к Уровню 3. Данные коммутаторы выполняет функции маршрутизации (логическую адресацию и выбор пути доставки) пакетов на IP-адрес получателя (Интернет-протокол). Коммутаторы уровня 3 проверяют IP-адреса источника и получателя каждого пакета данных в своей таблице IP-маршрутизации и определяют лучший адрес для последующей пересылки пакета (маршрутизатору или коммутатору). Если IP-адрес назначения не найден в таблице, пакет не будет отправлен до тех пор, пока не будет определен конечный муршрутизатор. По этой причине процесс маршрутизации осуществляется с определенной временной задержкой.

Коммутаторы уровня 3 (или многоуровневого коммутатора) имеют часть функций коммутаторов уровня 2 и маршрутизаторов. По сути, это три разных устройства, предназначенных для разных приложений, которые в значительной степени зависят от доступных функций. Однако, все три устройства также имеют часть общих функций.

Коммутатор уровня 2 VS Коммутатор уровня 3: В чём разница?

Основное различие между коммутаторами уровня 2 и уровня 3 - это функция маршрутизации. Коммутатор уровня 2 работает только с MAC-адресами, игнорируя IP-адреса и элементы более высоких уровней. Коммутатор уровня 3 выполняет все функции коммутатора уровня 2. Кроме того, он может осуществлять статическую и динамическую маршрутизацию. Это значит, что коммутатор уровня 3 имеет как таблицу MAC-адресов, так и таблицу маршрутизации IP-адресов, а также соединяет несколько устройств локальной вычислительной сети VLAN и обеспечивает маршрутизацию пакетов между различными VLAN. Коммутатор, который осуществляет только статическую маршрутизацию обычно называется Layer 2+ или Layer 3 Lite. Помимо пакетов маршрутизации коммутаторы уровня 3 также включают в себя некоторые функции, требующие наличие информации о данных IP-адресов в коммутаторе, таких как маркирование трафика VLAN на основе IP-адреса вместо ручной настройки порта. Более того, коммутаторы уровня 3 имеют большую потребляемую мощность и повышенные требования безопасности.

Коммутатор уровня 2 vs Коммутатор уровня 3: Как выбрать?

При выборе между коммутаторами уровня 2 и уровня 3, стоит заранее продумать, где и как коммутатор будет использоваться. В случае наличия домена уровня 2, вы можете просто использовать коммутатор уровня 2. Однако, если вам необходима маршрутизация между внутренней локальной сетью VLAN, следует использовать коммутатор уровня 3. Домен уровня 2 - это место подключения хостов, которое позволяет гарантировать стабильную работу коммутатора уровня 2. Обычно в топологии сети это называется уровнем доступа. Если необходимо переключиться на агрегирование множественных переключателей доступа и выполнить маршрутизацию между VLAN, необходимо использовать коммутатор уровня 3. В сетевой топологии это называется слоем распределения. Рисунок 2: случаи использования роутера, коммутатора уровня 2 и коммутатора уровня 3

Поскольку коммутатор уровня 3 и маршрутизатор имеют функцию маршрутизации, следует определить разницу между ними. На самом деле не так важно, какое устройство выбрать для маршрутизации, поскольку каждое из них обладает своими преимуществами. Если вам требуется большое количество маршрутизаторов с функциями коммутаторов для построения локальной сети VLAN, и вы не нуждаетесь в дальнейшей маршрутизации (ISP)/WAN, тогда можно спокойно использовать коммутатор уровня 3. В другом случае вам необходимо выбрать маршрутизатор с большим количеством функций уровня 3.

Коммутатор уровня 2 VS Коммутатор уровня 3: Где купить?

Если вы собираетесь купить коммутатор уровня 2 или уровня 3 для построения сетевой инфраструктуры, существуют определенные ключевые параметры, на которые мы рекомендуем вам обратить внимание. В частности, скорость пересылки пакетов, пропускная способность объединительной системной платы, количество VLAN, память MAC-адресов, задержка в передаче данных и др.

Скорость пересылки (или пропускная способность) - это возможность пересылки объединительной системной платы (или коммутационной матрицы). Когда возможности пересылки больше, чем суммарная скорость всех портов, объединительную плату называют неблокирующей. Скорость пересылки выражается в пакетах в секунду (pps). Формула ниже позволяет рассчитать скорость пересылки коммутатора:

Скорость пересылки (pps) = количество портов 10 Гбит/с * 14,880,950 pps + количество портов 1 Гбит/с * 1,488,095 pps + количество портов 100 Мбит/с * 148,809 pps

Следующий параметр, который следует рассмотреть, пропускная способность объединительной платы или пропускная способность коммутатора, которая вычисляется, как суммарная скорость всех портов. Скорость всех портов подсчитывается дважды, одна для направления Tx и одна для направления Rx. Полоса пропускания объединительной платы выражается в битах в секунду (бит/с или бит/с). Пропускная способность объединительной платы (бит/с) = номер порта * скорость передачи данных порта * 2

Другим важным параметром является настраиваемое количество VLAN. Как правило, 1K = 1024 VLAN достаточно для коммутатора уровня 2, а стандартное количество VLAN для коммутатора уровня 3 - 4k = 4096. Память таблицы MAC-адресов - это количество MAC-адресов, которое может храниться в коммутаторе, обычно выражаемое как 8k или 128k. Задержка - это время, на которое переносится передача данных. Время задержки должно быть как можно короче, поэтому латентность обычно выражается в наносекундах (нс).

Вывод

Сегодня мы попытались разобраться в различиях между уровнями 2 и 3 и в устройствах, обычно используемых на этих уровнях, включая коммутатор уровня 2, коммутатор уровня 3 и маршрутизатор. Основной вывод, который хотелось бы выделить сегодня, это то, что не всегда более совершенное устройство лучше и эффективнее. Сегодня важно понимать для чего, вы собирается использовать коммутатор, каковы ваши требования и условия. Четко понимание исходных данных поможет правильно подобрать наиболее подходящее для вас устройство.

www.fs.com

Маршрутизация

Маршрутизатор принимает свое основное решение о передаче на Уровне 3, но как мы видели ранее, он участвует в процессах Уровня 1 и Уровня 2 также.

После того, как маршрутизатор исследовал целевой IP-адрес пакета и просмотрел свою таблицу маршрутизации, чтобы принять решение о передаче, он может передать этот пакет на соответствующий интерфейс к его месту назначения. Маршрутизатор инкапсулирует пакет IP Уровня 3 в часть данных фрейма канала передачи данных Уровня 2, подходящего для интерфейса выхода. Тип фрейма может быть Ethernet, HDLC или некоторая другая инкапсуляция Уровня 2 - смотря какая инкапсуляция используется на этом конкретном интерфейсе. Фрейм Уровня 2 кодируются в физический сигнал Уровня 1, которые используются, чтобы представить биты на физической связи.

Чтобы понять этот процесс лучше, обратитесь к рисунку. Заметьте, что PC1 работает на всех семи уровнях, инкапсулируя данные и передавая кадр как поток закодированных битов к R1, его шлюзу по умолчанию.

R1 получает поток закодированных битов на свой интерфейс. Биты декодируются и передаются на Уровень 2, где R1 декапсулирует фрейм. Маршрутизатор исследует адрес получателя фрейма канала передачи данных, чтобы определить, соответствует ли он интерфейсу получения, включая широковещательный или групповой адрес. Если есть соответствие в части данных фрейма, пакет IP передается на Уровень 3, где R1 делает свое решение по маршрутизации. R1 тогда повторно инкапсулирует пакет в новый фрейм канала передачи данных Уровня 2 и передает его на исходящий интерфейс как поток закодированных битов.

R2 получает поток битов, и процесс повторяется. R2 декапсулирует фрейм и передает порцию данных фрейма, пакет IP, к Уровню 3, где R2 делает свое решение по маршрутизации. R2 затем повторно инкапсулирует пакет в новый фрейм канала передачи данных Уровня 2 и передает его на исходящий интерфейс как поток закодированных битов.

Этот процесс повторяется еще раз маршрутизатором R3, который передает пакет IP, инкапсулированный во фрейме канала передачи данных, и закодированный в виде битов, к PC2.

Каждый маршрутизатор в маршруте от источника к месту назначения выполняет этот тот же самый процесс декапсуляции, осуществляя поиск в таблице маршрутизации, и затем повторной инкапсуляции.

Далее: Проверка изменений в таблице маршрутизации

marshrutizatciia.ru

В чем разница между коммутаторами Layer 2 и Layer 3?

Компания «ТЕКВЕЛ» проводит обучающие семинары по МЭК 61850 с 2011 года. Участники семинаров нередко задают нам интересные вопросы, касающиеся стандарта МЭК 61850. Вы также можете отправлять свои вопросы по электронной почте [email protected], и все они найдут отражение на страницах рубрики «Консультация». Часто приходится слышать от посетителей следующий вопрос:

В чём разница между коммутаторами уровня 2 (layer 2) и уровня 3 (layer 3)? Какие коммутаторы устанавливать на объекте для построения сетевой инфраструктуры?

Отвечает Начальник отдела инжиниринга «ТЕКВЕЛ» Дмитрий Стешенко:

Коммутатор уровня 2 (L2) предназначен для соединения нескольких устройств локальной вычислительной сети (LAN) или нескольких сегментов данной сети. Коммутатор уровня 2 обрабатывает и регистрирует МАС–адреса поступающих фреймов, осуществляет физическую адресацию и управления потоком данных (VLAN, мультикаст фильтрация, QoS) в случае использования управляемых коммутаторов уровня 2.

Коммутаторы уровня 3 (L3) фактически являются маршрутизаторами, которые реализуют механизмы маршрутизации (логическая адресация и выбор пути доставки данных (маршрута) с использованием протоколов маршрутизации (RIP v.1 и v.2, OSPF, BGP, проприетарные протоколы маршрутизации и др.)) не в программном обеспечении устройства, а с помощью специализированных аппаратных средств (микросхем). В результате устройство становиться менее гибким, поскольку для модернизации средств реализации применяемых протоколов маршрутизации требуется замена аппаратного обеспечения, а не просто обновление программного обеспечения. Примером может служить устройства, в которых поддержка различных протоколов маршрутизации осуществляется в разных моделях. Традиционно коммутаторы уровня 3 (L3) использовались в локальных и территориальных сетях для обеспечения быстродействующей передачи данных в интересах большого количества подключенных к ним устройств в отличии от маршрутизаторов, традиционно осуществляющих низкоскоростной доступ к распределенной сети (WAN). Как правило, сегодня маршрутизаторы применяются при организации внешней связи энергообъекта совместно с мультиплексорами (MUX) с другими энергообъектами, ЦУС и ДЦ.

digitalsubstation.com

Каналы связи L2 и L3 VPN — Отличия физических и виртуальных каналов разного уровня

С доброй улыбкой теперь вспоминается, как человечество с тревогой ожидало в 2000 году конца света. Тогда этого не случилось, но зато произошло совсем другое событие и тоже очень значимое. Исторически, в то время мир вошел в настоящую компьютерную революцию v. 3.0. – старт облачных технологий распределенного хранения и обработки данных. Причем, если предыдущей «второй революцией» был массовый переход к технологиям «клиент-сервер» в 80-х годах, то первой можно считать начало одновременной работы пользователей с использованием отдельных терминалов, подключенных к т.н. «мейнфреймам» (в 60-х прошлого столетия). Эти революционные перемены произошли мирно и незаметно для пользователей, но затронули весь мир бизнеса вместе с информационными технологиями. При переносе IT-инфраструктуры на облачные платформы и удаленные ЦОД (центры обработки данных) ключевым вопросом сразу же становится организация надежных каналов связи от клиента к дата-центрам. В Сети нередко встречаются предложения провайдеров: «физическая выделенная линия, оптоволокно», «канал L2», «VPN» и так далее… Попробуем разобраться, что за этим стоит на практике.

Каналы связи – физические и виртуальные

1. Организацией «физической линии» или «канала второго уровня, L2» принято называть услугу предоставления провайдером выделенного кабеля (медного или оптоволоконного), либо радиоканала между офисами и теми площадками, где развернуто оборудование дата-центров. Заказывая эту услугу, на практике скорее всего вы получите в аренду выделенный оптоволоконный канал. Это решение привлекательно тем, что за надежную связь отвечает провайдер (а в случае повреждения кабеля самостоятельно восстанавливает работоспособность канала). Однако, в реальной жизни кабель на всем протяжении не бывает цельным – он состоит из множества соединенных (сваренных) между собой фрагментов, что несколько снижает его надежность. На пути прокладки оптоволоконного кабеля провайдеру приходится применять усилители, разветвители, а на оконечных точках – модемы.

В маркетинговых материалах к уровню L2 (Data-Link) сетевой модели OSI или TCP/IP это решение относят условно – оно позволяет работать как бы на уровне коммутации фреймов Ethernet в LAN, не заботясь о многих проблемах маршрутизации пакетов на следующем, сетевом уровне IP. Есть, например, возможность продолжать использовать в клиентских виртуальных сетях свои, так называемые «частные», IP-адреса вместо зарегистрированных уникальных публичных адресов. Поскольку использовать частные IP-адреса в локальных сетях очень удобно, пользователям были выделены специальные диапазоны из основных классов адресации:
  • 10.0.0.0 – 10.255.255.255 в классе A (с маской 255.0.0.0 или /8 в альтернативном формате записи маски);
  • 100.64.0.0 – 100.127.255.255 в классе A (с маской 255.192.0.0 или /10);
  • 172.16.0.0 – 172.31.255.255 в классе B (с маской 255.240.0.0 или /12);
  • 192.168.0.0 – 192.168.255.255 в классе C (с маской 255.255.0.0 или /16).
Такие адреса выбираются пользователями самостоятельно для «внутреннего использования» и могут повторяться одновременно в тысячах клиентских сетей, поэтому пакеты данных с частными адресами в заголовке не маршрутизируются в Интернете – чтобы избежать путаницы. Для выхода в Интернет приходится применять NAT (или другое решение) на стороне клиента.Примечание: NAT – Network Address Translation (механизм замены сетевых адресов транзитных пакетов в сетях TCP/IP, применяется для маршрутизации пакетов из локальной сети клиента в другие сети/Интернет и в обратном направлении – вовнутрь LAN клиента, к адресату). У этого подхода (а мы говорим о выделенном канале) есть и очевидный недостаток – в случае переезда офиса клиента, могут быть серьезные сложности с подключением на новом месте и возможна потребность в смене провайдера. Утверждение, что такой канал значительно безопаснее, лучше защищен от атак злоумышленников и ошибок низкоквалифицированного технического персонала при близком рассмотрении оказывается мифом. На практике проблемы безопасности чаще возникают (или создаются хакером умышленно) прямо на стороне клиента, при участии человеческого фактора.

2. Виртуальные каналы и построенные на них частные сети VPN (Virtual Private Network) распространены широко и позволяют решить большинство задач клиента.

Предоставление провайдером «L2 VPN» предполагает выбор из нескольких возможных услуг «второго уровня», L2:

VLAN – клиент получает виртуальную сеть между своими офисами, филиалами (в действительности, трафик клиента идет через активное оборудование провайдера, что ограничивает скорость);

Соединение «точка-точка» PWE3 (другими словами, «эмуляция сквозного псевдопровода» в сетях с коммутацией пакетов) позволяет передавать фреймы Ethernet между двумя узлами так, как если бы они были соединены кабелем напрямую. Для клиента в такой технологии существенно, что все переданные фреймы доставляются до удалённой точки без изменений. То же самое происходит и в обратном направлении. Это возможно благодаря тому, что фрейм клиента приходя на маршрутизатор провайдера далее инкапсулируется (добавляется) в блок данных вышестоящего уровня (пакет MPLS), а в конечной точке извлекается;

Примечание: PWE3 – Pseudo-Wire Emulation Edge to Edge (механизм, при котором с точки зрения пользователя, он получает выделенное соединение).

MPLS – MultiProtocol Label Switching (технология передачи данных, при которой пакетам присваиваются транспортные/сервисные метки и путь передачи пакетов данных в сетях определяется только на основании значения меток, независимо от среды передачи, используя любой протокол. Во время маршрутизации новые метки могут добавляться (при необходимости) либо удаляться, когда их функция завершилась. Содержимое пакетов при этом не анализируется и не изменяется).

VPLS – технология симуляции локальной сети с многоточечными соединениями. В этом случае сеть провайдера выглядит со стороны клиента подобной одному коммутатору, хранящему таблицу MAC-адресов сетевых устройств. Такой виртуальный «коммутатор» распределяет фрейм Ethernet пришедший из сети клиента, по назначению – для этого фрейм инкапсулируется в пакет MPLS, а после извлекается. Примечание: VPLS – Virtual Private LAN Service (механизм, при котором с точки зрения пользователя, его разнесенные географически сети соединены виртуальными L2 соединениями).

MAC – Media Access Control (способ управления доступом к среде – уникальный 6-байтовый адрес-идентификатор сетевого устройства (или его интерфейсов) в сетях Ethernet).

3. В случае развертывания «L3 VPN» сеть провайдера в глазах клиента выглядит подобно одному маршрутизатору с несколькими интерфейсами. Поэтому, стык локальной сети клиента с сетью провайдера происходит на уровне L3 сетевой модели OSI или TCP/IP.

Публичные IP-адреса для точек стыка сетей могут определяться по согласованию с провайдером (принадлежать клиенту либо быть полученными от провайдера). IP-адреса настраиваются клиентом на своих маршрутизаторах с обеих сторон (частные – со стороны своей локальной сети, публичные – со стороны провайдера), дальнейшую маршрутизацию пакетов данных обеспечивает провайдер. Технически, для реализации такого решения используется MPLS (см. выше), а также технологии GRE и IPSec.Примечание: GRE – Generic Routing Encapsulation (протокол тунеллирования, упаковки сетевых пакетов, который позволяет установить защищенное логическое соединение между двумя конечными точками – с помощью инкапсуляции протоколов на сетевом уровне L3).

IPSec – IP Security (набор протоколов защиты данных, которые передаются с помощью IP. Используется подтверждение подлинности, шифрование и проверка целостности пакетов).

Важно понимать, что современная сетевая инфраструктура построена так, что клиент видит только ту ее часть, которая определена договором. Выделенные ресурсы (виртуальные серверы, маршрутизаторы, хранилища оперативных данных и резервного копирования), а также работающие программы и содержимое памяти полностью изолированы от других пользователей. Несколько физических серверов могут согласованно и одновременно работать для одного клиента, с точки зрения которого они будут выглядеть одним мощным серверным пулом. И наоборот, на одном физическом сервере могут быть одновременно созданы множество виртуальных машин (каждая будет выглядеть для пользователя подобно отдельному компьютеру с операционной системой). Кроме стандартных, предлагаются индивидуальные решения, которые также соответствует принятым требованиям относительно безопасности обработки и хранения данных клиента. При этом, конфигурация развернутой в облаке сети «уровня L3» позволяет масштабирование до практически неограниченных размеров (по такому принципу построен Интернет и крупные дата-центры). Протоколы динамической маршрутизации, например OSPF, и другие в облачных сетях L3, позволяют выбрать кратчайшие пути маршрутизации пакетов данных, отправлять пакеты одновременно несколькими путями для наилучшей загрузки и расширения пропускной способности каналов. В то же время, есть возможность развернуть виртуальную сеть и на «уровне L2», что типично для небольших дата-центров и устаревших (либо узко-специфических) приложений клиента. В некоторых таких случаях, применяют даже технологию «L2 over L3», чтобы обеспечить совместимость сетей и работоспособность приложений.

Подведем итоги

На сегодняшний день задачи пользователя/клиента в большинстве случаев могут быть эффективно решены путём организации виртуальных частных сетей VPN c использованием технологий GRE и IPSec для безопасности. Нет особого смысла противопоставлять L2 и L3, равно как нет смысла считать предложение канала L2 лучшим решением для построения надёжной коммуникации в своей сети, панацеей. Современные каналы связи и оборудование провайдеров позволяют пропускать громадное количество информации, а многие выделенные каналы, арендуемые пользователями, на самом деле – даже недогружены. Разумно использовать L2 только в особенных случаях, когда этого требует специфика задачи, учитывать ограничения возможности будущего расширения такой сети и проконсультироваться со специалистом. С другой стороны, виртуальные сети L3 VPN, при прочих равных условиях, более универсальны и просты в эксплуатации. В этом обзоре кратко перечислены современные типовые решения, которые используют при переносе локальной IT-инфраструктуры в удаленные центры обработки данных. Каждое из них имеет своего потребителя, достоинства и недостатки, правильность выбора решения зависит от конкретной задачи.

В реальной жизни, оба уровня сетевой модели L2 и L3 работают вместе, каждый отвечает за свою задачу и противопоставляя их в рекламе, провайдеры откровенно лукавят.

Теги:
  • l2
  • l3vpn
  • l2vpn
  • каналы связи
  • хостинг
  • it-инфраструктура

habr.com

Отличие коммутатора 3-го уровня от маршрутизатора

Как только в локальной сети появляется хотя бы два сегмента (пример: сегмент пользователей, сегмент серверов), возникает необходимость использования маршрутизирующего оборудования, которое функционирует на третьем уровне модели OSI. В этом случае может возникнуть вопрос: “Что использовать? Коммутатор третьего уровня или маршрутизатор? В чем разница, какие отличия?”. Попытаемся разобраться.

Изначально у этих двух устройств различное предназначение.

Коммутатор 3-го уровня (L3 switch) - это прежде всего устройство для локальной вычислительной сети (LAN - Local Area Network). Т.е. данный коммутатор должен маршрутизировать трафик в локальной сети между существующими сегментами. Обычно он используется на уровне распределения (Distribution Layer) в иерархической модели сети.

Маршрутизатор предназначен для подключения локальной сети (LAN) к Глобальной компьютерной сети (WAN - Wide Area Network), т.е. осуществляет маршрутизацию трафика во внешний мир (Интернет, филиалы, удаленные сотрудники) и обратно.

Может возникнуть вопрос: “Зачем нужен коммутатор 3-го уровня, если его функции может выполнять маршрутизатор?”

Если не вдаваться в подробности, то коммутатор третьего уровня можно сравнить с очень быстрым маршрутизатором. Он также умеет работать с протоколами динамической маршрутизации (OSPF, RIP) и абсолютно совместим с обычным маршрутизатором. Доступна настройка списков доступа (так называемые access листы) и многое другое. 

Ответ кроется в производительности и цене. Дело в том, что современные коммутаторы 3-го уровня превосходят по производительности маршрутизаторы в десятки и даже сотни раз. Обусловлено это применением в коммутаторах набора специализированных микросхем (ASIC). Маршрутизация (обработка пакетов) происходит на аппаратном уровне, а программная поддержка остается для процедур, которые напрямую не связаны с обработкой трафика: расчет таблиц маршрутизации, списки доступа и т.д.

У обычного маршрутизатора этот механизм (обработка пакетов) реализован программно, и он как правило функционирует на процессоре общего назначения. Однако стоит отметить, что некоторые современные маршрутизаторы так же имеют специальные выделенные микросхемы для ускорения обработки пакетов без использования процессора, но такие маршрутизаторы гораздо дороже коммутаторов 3-го уровня.

Представьте ситуацию, когда у вас в организации расположен датацентр и требуется маршрутизация трафика на больших скоростях - десятки Гигабит в секунду. В этом случае вам подходит только коммутатор 3-го уровня. Маршрутизатор с такой пропускной способностью просто не справится или будет стоить огромных денег.

И опять может возникнуть вопрос: “Зачем использовать маршрутизатор, если его функции может выполнять коммутатор 3-го уровня? Ведь он быстрее и дешевле?”

Не вдаваясь в технические подробности, если более детально рассматривать функции маршрутизации, то коммутатор третьего уровня проигрывает по возможностям традиционному маршрутизатору. Современный маршрутизатор можно с легкостью превратить в полноценный Межсетевой экран (МЭ) с помощью дополнительных лицензий (отличие маршрутизатора от межсетевого экрана мы рассмотрим чуть позже).

Со временем грань между коммутаторами и маршрутизаторами становится все тоньше. Не исключено что в скором времени ее и вовсе не будет видно.

Таким образом, в случае подключения локальной сети к Интернет или построении VPN канала с удаленными филиалами (а так же удаленное подключение пользователей) необходимо использовать маршрутизатор.

blog.netskills.ru

Разница между коммутатором уровня 2 и коммутатором уровня 3

Оглядываясь назад на некоторые из самых значительных событий в истории сетей на протяжении многих лет, неудивительно, что мы зашли так далеко. То, что начиналось как основной компьютер, отправляющий команды на другой компьютер, превратилось в передовой компьютерный сектор, охватывающий широкую область сетей. Компьютерные сети появились в результате конвергенции компьютерных и коммуникационных технологий. И влияние компьютерных сетей на сети связи привело к чему-то большому, результатом чего является сетевая конвергенция. Это в конечном итоге привело к созданию интегрированной системы, способной передавать все типы данных и информации.

Для подключения нескольких устройств в компьютерной сети требовался сетевой мост. Здесь к изображению подключаются сетевые коммутаторы. Сетевой коммутатор - это сетевой мост, который соединяет несколько устройств в компьютерной сети. С быстрым развитием компьютерных сетей на протяжении многих лет, high-end переключение стало одной из самых важных функций, позволяющих различным устройствам в компьютерной сети взаимодействовать друг с другом. Сетевые коммутаторы могут быстро и эффективно перемещать данные из одной точки в другую. Он получает пакеты данных от отправителя и перенаправляет их на место назначения в зависимости от информации адресации, прикрепленной к каждому пакету данных.

Что такое коммутатор уровня 2?

Коммутаторы уровня 2 в основном выполняют только переключение, что означает, что они работают с MAC-адресами устройств для перенаправления пакетов данных с исходного порта на порт назначения. Он делает это, поддерживая таблицу MAC-адресов, чтобы помнить, какие порты имеют назначенные MAC-адреса. MAC-адрес работает на уровне 2 эталонной модели OSI. MAC-адрес просто отличает одно устройство от другого, каждому устройству присваивается уникальный MAC-адрес. Он использует аппаратные методы коммутации для управления трафиком в локальной сети (локальной сети). Поскольку переключение происходит на уровне 2, процесс выполняется быстрее, потому что все, что он делает, это сортировка MAC-адресов на физическом уровне. Говоря простыми словами, коммутатор уровня 2 действует как мост между несколькими устройствами.

Что такое коммутатор уровня 3?

Переключатель уровня 3 точно противоположный тому, что делает коммутатор уровня 2. Коммутаторы уровня 2 не могли маршрутизировать пакеты данных на уровне 3. В отличие от коммутаторов уровня 2, уровень 3 выполняет маршрутизацию с использованием IP-адресов. Это специализированное аппаратное устройство, используемое в маршрутизации пакетов данных. Коммутаторы уровня 3 имеют быстрые возможности переключения, и они имеют более высокую плотность портов. Они являются значительными обновлениями по сравнению с традиционными маршрутизаторами, чтобы обеспечить лучшую производительность, и основным преимуществом использования коммутаторов уровня 3 является то, что они могут маршрутизировать пакеты данных, не делая дополнительных сетевых переходов, тем самым делая их быстрее, чем маршрутизаторы. Однако им не хватает дополнительных функций маршрутизатора. Коммутаторы уровня 3 обычно используются в крупных предприятиях. Проще говоря, коммутатор уровня 3 - это не что иное, как высокоскоростной маршрутизатор, но без подключения к WAN.

Разница между коммутаторами уровня 2 и уровня 3

  1. - Переключение выполняется на уровне 2 справочной модели OSI, где пакеты данных перенаправляются на порт назначения на основе MAC-адресов. Таким образом, коммутаторы уровня 2 просто переключаются. С другой стороны, коммутатор уровня 3 представляет собой специализированное аппаратное устройство, используемое для маршрутизации пакетов данных с использованием IP-адресов. Так что это просто маршрутизация.

  2. - Переключатель уровня 2 может только переключать пакеты с одного порта на другой, где, поскольку коммутатор уровня 3 способен как переключать, так и маршрутизировать. Ну, маршрутизация невозможна при переключении уровня 2, что означает, что устройства могут общаться в одной сети. При переключении уровня 3 устройства могут взаимодействовать как внутри сети, так и вне ее.

  3. - Коммутаторы уровня 2 используют MAC-адреса устройств для перенаправления пакетов данных с исходного порта на порт назначения. Они перенаправляют пакеты, поддерживая таблицу MAC-адресов. Напротив, коммутаторы уровня 3 используют IP-адреса для соединения различных подсетей вместе с использованием специальных протоколов маршрутизации

  4. - Переключение уровня 2 аппаратно и коммутаторы используют ASIC (специализированные интегральные схемы) для поддержки таблицы MAC-адресов. Коммутаторы и мосты используют коммутацию уровня 2, как типичная локальная сеть, которая разбивает большой домен на несколько небольших доменов. Коммутаторы используют процесс, называемый протоколом разрешения адресов (ARP), для определения MAC-адресов других устройств. Коммутаторы уровня 3 представляют собой современное сочетание коммутаторов и маршрутизаторов, которые обычно используются для маршрутизации в виртуальных локальных сетях (VLAN).

  5. - Переключатели, обычно работающие на уровне 2, занимают меньше времени, чем работают на уровне 3. Все, что они делают, это назначить MAC-адресам перенаправление пакетов с порта источника на порт назначения в коммутаторе уровня 2. Напротив, коммутаторы уровня 2 занимают немного времени, чтобы исследовать пакеты данных, прежде чем найти наилучший возможный маршрут для отправки пакетов в их порт назначения.

Переключатель уровня 2 и уровня 3: сравнительная таблица

Коммутация работает на уровне 2 справочной модели OSI. Переключатели уровня 3 выполняют как коммутацию, так и маршрутизацию.
Он использует MAC-адреса для облегчения связи внутри устройств из одной сети. Он использует IP-адреса для соединения разных подсети вместе с использованием динамических протоколов маршрутизации.
Это единый широковещательный домен. Это широковещательный домен.
Устройства могут взаимодействовать только в одной сети. Устройства могут взаимодействовать внутри или вне сетей.
Переключение на уровень 2 довольно быстро, так как они не смотрят на часть 3 уровня пакетов данных. Требуется время для проверки пакетов данных перед отправкой их в пункт назначения.

Резюме коммутатора уровня 2 и уровня 3

Скорость и эффективность сетевого коммутатора определяется его процессором, коммутационной матрицей и ее алгоритмом. И его сложность зависит от уровня, на котором коммутатор работает в модели Open Systems Interconnection (OSI). Модель OSI представляет собой концептуальную модель, которая стандартизирует функции связи для того, как приложения должны взаимодействовать по сети. Модель OSI была создана для обеспечения совместимости систем передачи данных по всему миру. В средней компьютерной сети в течение многих лет доминировали переключатели уровня 2. Но по мере увеличения сложности приложения требуют более надежной и надежной конфигурации сети. Здесь переключатели уровня 3 подключаются к изображению.

ru.esdifferent.com


Смотрите также