Кастомное водяное охлаждение для пк


Почему водяное охлаждение не нужно в обычном ПК

Компьютерная область давно уже перестала быть сугубо профессиональной — теперь ПК есть в каждом доме, и зачастую не один. А с популярностью приходит и мода: попробуйте найти корпус дороже нескольких тысяч рублей без стекла, а топовую материнскую плату или видеокарту — без RGB-подсветки. Конечно, все эти «навороты» никак не влияют на работу компьютера, но есть и другие новые веяния, причем некоторые из них могут быть не только дорогими и бесполезными, но и даже опасными. К ним относится и повальное желание ставить в дорогие ПК системы водяного охлаждения (СВО). Конечно, это кажется логичным — «вода» ведь должна охлаждать лучше «воздуха» — но ниже я попытаюсь объяснить, почему для обычного ПК, пусть и мощного, СВО абсолютно не нужна.

Физика: вода против эфира

И хотя СВО и кулер делают одно и тоже — отводят тепло от горячего процессора — на практике они делают это разными с физической точки зрения способами, и поэтому нельзя со 100% уверенностью утверждать, что водяное охлаждение окажется эффективнее воздушного. Как работает «водянка»? К крышке процессора (или GPU) прилегает медный радиатор, над которым (или рядом) установлены резервуар и помпа, прогоняющая воду через него. В дальнейшем эта вода по трубке поступает в радиатор большей площади (это достигается путем разделения потока на множество мелких каналов, что улучшает охлаждение), который уже обдувается обычным вентилятором. Охлажденная таким образом вода поступает обратно к процессору или GPU и все повторяется по кругу. Как видите — абсолютно ничего сложного, схожий принцип используется для охлаждения двигателей автомобилей чуть ли не столетие.

А как работает башенный кулер? К процессору прилегают медные трубки (напрямую или через никелированный алюминий), другой конец которых соприкасается с пластинами радиатора, тепло с которых уносится потоком воздуха от вентилятора. Но просто так делать медные трубки не эффективно — они просто нагреются в области рядом с процессором, а у радиатора останутся холодными. Поэтому их делают полыми, а внутрь заливают легко испаряющуюся жидкость (спирт, ацетон, эфир) и вставляют фитиль. В итоге благодаря капиллярным эффектам такая трубка умеет работать в любом положении: жидкость, испаряясь рядом с процессором и забирая у него тепло, конденсируется на другом конце трубки у более холодного радиатора и стекает по фитилю обратно ближе к горячему «камню».

Как видите, принципы работы СВО и кулера достаточно сильно различаются: в одном случае тепло забирается благодаря испарению жидкости, в другом — благодаря ее нагреву. Различны и принципы переноса охлаждающего вещества — помпа и капиллярные эффекты. Поэтому нельзя твердо утверждать, что СВО будет гарантированно эффективнее, с чем мы ниже и столкнемся. Теперь, когда с физикой происходящего мы разобрались, можно переходить к конкретным случаям и причинам, почему СВО не нужна для домашнего компьютера.

Для игрового ПК система водяного охлаждения — лишняя трата денег

Достаточно большое количество компьютеров собираются только для игр, и тут желание поставить СВО вполне ожидаемо: раз в сборку попадает топовый процессор, топовая память, топовая материнская плата и топовая видеокарта, то и охлаждение должно быть топовым, то есть водяным.

Какой рендер игрового ПК обойдется без СВО? Правильно, никакой. Логика эта вполне понятна, но в ней есть один изъян — игры в большинстве своем несильно нагружают процессор: они зачастую неспособны распараллелить большое число потоков, и уж совсем в единичных случаях используют «горячие» векторные инструкции типа AVX. В итоге реальное тепловыделение процессоров в играх оказывается даже меньше, чем в спецификациях от производителя, которые пишут о 95-105 Вт для мощных CPU типа Core i9-9900K или Ryzen 7 2700X. А с сотней ватт тепла без особых проблем справятся даже простые башенные кулеры с двумя-тремя теплотрубками: да, зачастую с ними температура будет на несколько градусов выше, но в данном случае едва ли это будет критичным: какая разница, будет на процессоре 65 градусов или 70, если критичные температуры на пару десятков градусов выше? А если учитывать, что более-менее качественные СВО стоят в 3-4 раза дороже простых «суперкулеров», то выбор в данном случае оказывается очевидным.

СВО не поможет при разгоне процессоров от Intel последних поколений 

Intel уже почти 5 лет использует все тот же 14 нм техпроцесс, а вот количество ядер за это время увеличилось вдвое, да и частоты стали максимально близки к 5 ГГц. Поэтому нет ничего удивительного в том, что под серьезной вычислительной нагрузкой тот же 8-ядерный Core i9-9900K может выделять и 200, и 250, и даже 300 Вт тепла! Казалось бы — вот оно, идеальное применение для трехвентиляторной системы водяного охлаждения, тут она точно покажет себя с лучшей стороны. Но на практике получается достаточно забавная ситуация: что с топовой СВО, что с мощным кулером такой процессор в разгоне все равно будет быстро нагреваться до 100-110 градусов и сбрасывать частоты. Что, не справляется СВО? Нет конечно, проблема лежит глубже. После 2011 года, когда стало понятно, что процессоры AMD FX не являются конкурентами для Intel Core 2-ого поколений, компания Intel стала «мухлевать» — дескать, у пользователей все равно нет выбора, и так купят. В результате процессоры с 3-его по 8-ое поколение под крышкой имели вместо высокоэффективного припоя «пластичный термоинтерфейс», или термопасту, у которой коэффициент теплопроводности хуже на порядок! Увы — даже возврат припоя под крышку топовых процессоров 9-ого поколения не помог, ибо на нем Intel тоже сэкономила.

Что в итоге происходит? Пока поток тепла от кремниевого кристалла невелик (например, вы играете), термопаста под крышкой вполне справляется с передачей тепла и температуры оказываются невелики. Но как только вы начинаете серьезно нагружать CPU, и поток тепла увеличивается в разы, термоинтерфейс... перестает справляться с его отводом. Поэтому без разницы, чем вы будете охлаждать такой процессор — проблема лежит в прямом смысле того слова глубже. Единственный выход из такой ситуации — это скальпирование (снятие крышки) с процессора и замена «терможвачки» на жидкий металл, у которого коэффициент теплопроводности может быть даже выше, чем у припоя. И только после этого разница между СВО и кулером станет видна, и лишь «водянки» без проблема отведут 250-300 Вт от «раскочегаренного» Core i9. Так что если вы не горите желанием посылать под нож только что купленный за 30-40 тысяч рублей процессор — нет никакого смысла брать к нему в пару СВО вместо суперкулера, вы не увидите понижения температуры в серьезных задачах, поэтому в данном случае можно можно сэкономить и брать воздушное охлаждение.

Лишь дорогие СВО могут конкурировать с мощными башенными кулерами

Ладно, с современными процессорами от Intel все понятно. Но а что если у нас старые CPU от Intel с качественным припоем, или же современные AMD Ryzen с ним же. Имеет ли тут смысл брать СВО? Опять же — едва ли, и причина все в той же эффективности (соотношение цены и получаемой температуры), которая у СВО в данном случае достаточно низкая. За примерами далеко ходить не нужно: возьмем популярную простую двухсекционную «водянку» Deepcool GAMMAXX L240. Она находится в топе Яндекс.Маркета, имеет хорошие отзывы покупателей и достаточно демократичную цену в 5 тысяч рублей. Вторым примером можно взять известный башенный кулер Zalman CNPS10X Performa+, который стоит почти вдвое ниже, порядка 3 тысяч рублей. Используемый в обзоре на GECID.com процессор Core i5-2500K имеет качественный припой под крышкой и был достаточно сильно разогнан с некоторым завышением напряжения, чтобы иметь высокое тепловыделение. Температуры при этом получились очень и очень любопытными:

Получается, башенный кулер оказался и сильно дешевле СВО, и эффективнее? Да, все именно так: «водянки» не являются панацеей. Особенно если мы берем достаточно дорогой кулер и бюджетную СВО. Разумеется, если поставить в пару к такому процессору какую-нибудь трехсекционную NZXT Kraken за 15 тысяч рублей, то она окажется лучше решения от Zalman, но ответьте сами на вопрос — вы согласны отдать половину цены процессора за то, чтобы получить выигрыш в несколько градусов, который ни на что не влияет?

Получается, что СВО вообще не нужны?

Разумеется нет — они не нужны в пользовательских компьютерах. Достаточно перейти к тому же HEDT-сегменту, где процессоры с парой десятков ядер не являются редкостью, как ситуация резко меняется: так, в Hardwareluxx протестировали 24-ядерного монстра AMD Threadripper 2970WX с легким разгоном до 3.5 ГГц в паре с несколькими топовыми СВО и башенными кулерами — в таком режиме его тепловыделение уходило за 350 Вт! И вот тут тесты показывают полный разгром кулеров: они отстают местами на 10-15 градусов, и, что самое главное, по сути с трудом справляются со своей задачей даже на максимальных оборотах, так как для этого процессора 68 градусов является максимальной рабочей температурой:

Так что, как видите, в рабочих станциях «вода» достаточно эффективна, да и стоимость СВО меркнет перед стоимостью процессора и платы для него, что делает покупку такого охлаждения имеющей смысл.

С процессорами понятно, а что насчет видеокарт?

На рынке продаются СВО не только для процессора, но и для видеокарты. Более того — есть даже уже готовые видеокарты с отверстиями для подключения шлангов кастомной «водянки». Отсюда следует вполне очевидный вопрос — а надо ли? Ведь тепловыделение топовых решений от Nvidia и AMD зачастую оказывается на уровне 250-300 Вт, что достаточно много, и вроде бы СВО тут лишней не будет. Для начала разберемся с видеокартами от Nvidia. Тут компания делает достаточно жесткие правила: тепловыделение производители вольны повышать как им угодно, хоть на +50%. А вот с напряжением все плохо — оно зачастую регулируется лишь в сторону уменьшения. В итоге получается интересная ситуация: вроде по температурам все хорошо, по тепловыделению тоже, но из-за заблокированного напряжения поднять частоты выше без потери стабильности не получается. Конечно, есть кастомные VideoBIOS, где управление напряжением разблокировано, и различные аппаратные доработки самой видеокарты, но мы все же говорим об обычных пользователях, которые не будут делать действия, которые приводят к потери гарантии.

+100% к напряжению увеличивают его всего на 0.01-0.03 В — это едва ли поможет в разгоне. В итоге мы получаем, что раз напряжение почти не меняется — тепловыделение даже у таких монстров, как 1080 Ti и 2080 Ti, в играх редко уходит за 300 Вт, и тут трехвентиляторные СО вполне справляются, удерживая температуры чипов на уровне 70-80 градусов при критичных 90+. Конечно, СВО снизит температуру, и из-за этого технология Nvidia Boost поднимает частоту на 20-50 МГц (1-2%), но опять же, едва ли стоит переплачивать за это 10-20 тысяч рублей. С видеокартами от AMD все интереснее: компания опять же не дает трогать напряжения в сторону увеличения, но при этом самостоятельно выпускает разогнанные дальше некуда видеокарты Vega с тепловыделением в 400+ Вт, комплектуя их СВО. В данном случае это выглядит логично, но с учетом крайне неконкурентоспособной цены эти решения в основном оседают на руках коллекционеров.

Великолепное решение, которое потребляет как две RTX 2080, стоит как 2080 Ti, а по производительности слабее 1080 Ti. В итоге с видеокартами ситуация такая же, как и с процессорами: если вы не горите желанием копаться в BIOS и аппаратно дорабатывать видеокарту для получения максимальных частот, то СВО вам не нужна абсолютно.

Надежность: механика + вода = ... ?

Обычные кулеры по сути вечные: медные трубки запаяны, эфиру или спирту деваться некуда. Так что по сути основная проблема с ними — выход из строя вентилятора, который обычно без проблем меняется на такой же или похожий по размерам самостоятельно в домашних условиях. С системой водяного охлаждения, даже необслуживаемой, все куда хуже. Во-первых, там есть дополнительный механический инструмент — помпа, и если она сломается, то с высокой долей вероятности вы пойдете за новой СВО. Во-вторых, налитая внутрь жидкость, которая обычно является водой с присадками, все-таки медленно, но реагирует с пластиковыми шлангами. Итог — медный радиатор и помпа забиваются не самой приятной на вид жижей, что резко увеличивает температуры. Так что если обычный кулер достаточно продуть сжатым воздухом раз в пару лет, и он будет без проблем работать дальше, то вот «водянку» придется разбирать, сливать раствор пластика в воде, чистить, собирать обратно и аккуратно заливать новую жидкость. Проделать это в домашних условиях, в принципе, реально, но с учетом пунктов выше нет смысла так заморачиваться.

Думаете, что синяя жидкость в шлангах выглядит красиво? Радиатор думает иначе. Что касается протечек, то это очень и очень редкое событие: если у СВО не было заводского брака (что легко проверить, запустив ее в холостом режиме на столе), и вы не повредили шланги при установке, то скорее всего она будет вас радовать беспроблемной работой, пока не забьётся. Но, опять же, у кулеров такой проблемы нет в принципе.

Итог — башенный кулер лучше

Что в результате можно сказать про СВО в обычных ПК? Дорого, не особо эффективно и не особо надежно — но очень-очень модно. Так что если вы не собираете себе домашнюю рабочую станцию на Xeon или Threadripper, то смотрите лучше на так называемые «суперкулеры» — с ними вы как минимум выиграете по деньгам, потеряв в самом худшем случае некритичные пару градусов температуры.

www.iguides.ru

Система жидкостного охлаждения компьютера: что это и как работает

Здравствуйте.

Вы наверняка сами не раз чувствовали, что в процессе работы ваш комп выделяет тепло. Чтобы он не перегрелся, часто используется встроенный кулер. Но с ростом производительности железа его стало не достаточно. Для качественного обдува его мощность тоже должна быть увеличена, из-за чего повышается шумность работы компа, тем более если вы ещё и занимаетесь разгоном.

Чтобы избавиться от этих и других недостатков, разработана система жидкостного охлаждения компьютера. Хотите узнать о ней больше? Читаем статью.

Если вы подумали что это что — то типо того, то вы ошибаетесь :))

Итак, что это такое?

В данной теме вы можете встретить аббревиатуру СВО, которая расшифровывается как система водяного охлаждения. Также используется еще одна — СЖО, где второе слово заменено на «жидкостного». Как вы догадались, от воздушного охлаждения, к которому вы привыкли, отличает ее то, что тепло от железа передается не воздуху, а воде.

Плюсы и минусы

Новаторское решение эффективнее своего воздушного предшественника по таким причинам:

  • Повышенная теплоемкость жидкости.
  • Стабильность при разгоне.
  • Тепло отводится от центра проца. В свою очередь, микромотор воздушных систем расположен над самой горячей зоной радиатора, напротив CPU, из-за чего создается мертвая точка, откуда горячий воздух не выводится. А его (тепло) по логике лучше всего отдалять — дабы повысить качество охлаждения.

Подающая воду помпа создает гораздо меньше шума, чем вентилятор.

  • Полностью выводит тепло из системного блока, в то время как воздушная система просто разгоняет его внутри корпуса.

У вас мощный компьютер с современными комплектующими? Тогда стоит рассмотреть установку водяной схемы, потому что она лучше способна уберечь устройства от перегрева, и как следствие, быстрого выхода из строя и не будет надоедать вам шумом. Такая система и сама прослужит долго. Приятным бонусом является привлекательный дизайн.

Но выделяют и недостатки водяных систем:

  • Высокая цена. Учитывая стоимость комплектующих, которые она будет защищать, на это можно закрыть глаза.
  • Более сложная сборка.
  • Возможность разгерметизации. Но при правильной установке этот «минус» исключается.

Как работает система жидкостного охлаждения компьютера?

Теплообменником СЖО является «waterblock» или второе название «водоблок» . Он берет на себя горячий воздух, выделяемый процессором, видеокартой и пр., и передает его воде. При помощи особого насоса она поступает в еще один теплообменник — радиатор, забирающий тепло из воды и выводит его в воздух за границы системника.

Комплектация СВО

Выше уже упомянуты основные элементы водяной системы. Так как многие энтузиасты решают сами заниматься ее сборкой, разберем подробнее, из чего  состоит СВО. В комплектацию современных моделей может входить множество разных элементов. Мы рассмотрим только основные из них.

Водоблок

Зачем он нужен, вы теперь знаете. Как он выглядит? Прибор имеет обычно медное основание, крышку из пластика или металла и крепления, чтобы присоединять его к охлаждаемому устройству.

Кстати, для процессоров, северного моста на чипе и видеокарт существуют разные типы водоблоков. Те, что предусмотрены для последних в перечислении девайсов, разделяются на подвиды: закрывающие только графический чип («gpu only») либо все нагревающие элементы.

Сейчас основание ватерблоков делается из тонкой меди, в отличие от первоначальных вариантов, чтобы тепло быстрее передавалось воде. Дно может быть выполнено и из алюминия: это дешевле, но менее эффективно.

Также нынешние приборы имеют микроканальную или микроигольчатую структуру для усовершенствования поверхности теплоотдачи. Но в случаях, к примеру, с системным чипом, где не идет счет эффективности охлаждения на градусы, может использоваться плоское дно или архитектура с простыми каналами.

В зависимости от схемы устройства, ватерблоки разделяются на 3 вида:

  • «Змейка». Используется один или несколько непрерывных каналов. Они могут быть выполнены с расходящейся спиралью, когда штуцер находится посередине прибора, или в виде зигзага, если 2 штуцера расположены по краям.

  • Пересекающиеся каналы. Они создаются путем сверления в основании с торцов, а отверстия закрываются при помощи заглушек.

  • Без канальные. К основанию припаивается емкость со штуцерами. Через расположенный на входе теплоноситель поступает вода и выводится через боковой.

Радиатор

Его также называют водно-воздушным теплообменником из-за выполняемых им функций. Он бывает 2  типов: с вентилятором или без. Первые — активные — встречаются чаще, потому что эффективнее пассивных собратьев, хотя вторые отличаются бесшумностью.

Размер более распространенных радиаторов может быть разным, но в большинстве случаев кратен габаритам вентилятора на 120 мм или 140 мм. Получается, что теплообменник на 3 120-миллиметровых вентилятора будет иметь длину 360 мм и ширину 120 мм. Такой вариант называют трёхсекционным.

Помпа

Эта штука гоняет жидкость по всей системе (иными словами насос). Работает он от электричества: некоторые модели при напряжении 12 V, другие — 220 V. Бывает внешняя помпа (пропускает воду через себя) и погружная (выталкивает ее). Второй вариант компактнее первого.

Учитывайте, что указанная производителем мощность насоса является максимальной и достигать ее не рекомендуется.

Некоторые умельцы используют аквариумную помпу, однако в случае с дорогими комплектующими компьютера не стоит проводить такие эксперименты. Современные ватерблоки обладают высоким гидросопротивлением из-за усиленной производительности, поэтому лучше устанавливать к ним специализированный насос.

Шланги и крепления

Несложно догадаться, что трубки нужны для циркуляции жидкости в системе. Чаще всего они изготавливаются из ПВХ, иногда встречаются силиконовые. Их длина абсолютно не влияет на эффективность СВО. Что касается диаметра, лучше не брать шланги тоньше 8 мм.

Не обойтись и без фитингов, которые нужны для подсоединения трубок к комплектующим системы. Каждый из них имеет отверстие с резьбой, куда и вкручиваются крепления.

Самые популярные — компрессионные (с гайкой) и в виде елочки (штуцеры). Также они бывают прямые и угловые. Различаются и по типу резьбы: зачастую используются G1/4′′, редко — G1/8′′ и G3/8′′.

Вода

Для заправки лучше брать дистиллированную воду. Это самый хороший и доступный вариант. Иногда применяется деионизированная вода или с разными примесями, но особой необходимости в этом нет.

Необязательные составляющие

Подробно не буду останавливаться на каждом комплектующем элементе, а только приведу список того, что может входить в состав СВО, но без чего можно и обойтись:

  • Термодатчики;
  • Краны для слива воды;
  • Контроллеры насосов и вентиляторов;
  • Измерители температуры, давления, потока и пр.;
  • Фильтры;
  • Расширительный бачок;
  • Фильтр, подсоединенный в контур;
  • Бэкплейт — пластина для снятия нагрузки с материнки или видеокарты;
  • Дополнительные ватерблоки.

Виды водяных систем

По способу расположения СЖО бывают внешними и внутренними. Первые выполняются в виде отдельного корпуса, который при помощи трубок подсоединяется к ватерблоку, находящемуся внутри системного блока. В стоящем рядом «ящике» располагаются остальные элементы системы.

Этот вариант хорош тем, что не приходится ничего менять внутри системника при установке СВО. Однако если вы соберетесь переносить комп, то столкнетесь с неудобствами. Среди внешних систем популярны модели «Большая вода» торговой марки Thermaltake или EK.

Внутренние системы, очевидно, располагаются внутри системного блока. Но не всегда получается впихнуть внутрь все компоненты, поэтому часто выносится наружу радиатор.

Ну теперь вы подкованы в том что такое система жидкостного охлаждения компьютера. Удачи в выборе и терпения в установке.

До свидания, увидимся ещё, надеюсь ;).

profi-user.ru

Обзор комплекта СВО Thermaltake Pacific RL360. Строим кастомную «воду», или сказ как потратить $400 на охлаждение

Кастомная система водяного охлаждения – тема крайне обширная. В первую очередь так конечно же потому, что СВО состоит из не одного элемента, и даже не из двух, как в типичной паре радиатор-вентилятор, а из куда большего числа компонентов: радиатор, резервуар, помпа, водоблок, трубки, фитинги, вентиляторы и наконец хладагент. Прибавьте к этому всему бесконечное множество разновидностей всего этого от разных производителей и тогда все станет примерно на свои места.

Более того, система водяного охлаждения отличная с позволения сказать «почва» для энтузиастов, желающих дальнейшей модернизации. Это в простонародье называется “колхоз”. С СВО возможности самореализации и фантазии практически безграничны.

Ооо, чего только “кулибины” с просторов бывшего СНГ не прикручивали к своим системам: радиатор трансмиссии от ГАЗ-24 (Волга), радиатор от ВАЗ-1111 (Ока), самодельные водоблоки из говна и палок какой-то пластины меди, к которой приварена медная проволока, закрученная в пружину (+ корпус из акрила) – в широчайшем ассортименте. Использовали батарею отопления как радиатор с помпой от холодильника. И как вершина гениальности – к стояку с холодной водой приделывали шланг, его напрямую к водоблоку на процессоре (естественно самопальному), а слив воды прямо в канализацию. Метод конечно не на постоянку, но зато эффективность крайне поразительная. Особенно изощренными в этом славном деле по праву признаны жители очень холодных регионов. В общем, я про это могу рассказывать очень долго, всякой дичи по форумам повидал=) Один из примеров:

Помимо фактически безграничных возможностей по моддингу, СВО примечательна разбросом цен. Можно собрать реально целый контур за $100, а также за эти же $100 купить один только радиатор.

Производители компонентов СВО помимо самих компонентов продают еще и «киты» — то есть полные наборы для сборки контура системы водяного охлаждения. В них есть сразу все необходимое для сборки «водянки». С одним из таких комплектов мы сегодня и познакомимся, с Thermaltake Pacific RL360 (CL-W113-CA12SW-A).

Страницы: Page 1, Page 2, Page 3, Page 4

occlub.ru

Тихая заводь: собираем систему водяного охлаждения для ПК | CHIP

Водное охлаждение компьютера позволяет снизить температуру процессора и графической платы примерно на 10 градусов, что повышает их долговечность. Кроме того, за счет снижения нагрева система подвергается меньшей нагрузке. Это также позволяет разгрузить вентилятор, значительно снизив его обороты, и, таким образом, получить практически бесшумную систему.

Встроить водное охлаждение довольно просто. Мы расскажем как это сделать в нашем пошаговом руководстве. В статье описывается установка водного охлаждения на примере готового набора Innovatek Premium XXD и корпуса Tower Silverstone TJ06. Монтаж других систем производится аналогичным образом.

Установка водяного охлаждения

1. Подготовка инструментов

Для успешной установки системы охлаждения вам понадобятся инструменты. Мы остановили свой выбор на чрезвычайно удобном швейцарском ноже Victorinox Cyber Tool Nr. 34. В него кроме самого ножа входят клещи, ножницы, маленькая и средняя крестообразная отвертка, а также набор насадок. Кроме того, приготовьте гаечные ключи на 13 и 16. Они потребуются для затягивания соединений.

2. Подготовка радиатора

В цикле охлаждения радиатор обеспечивает стабилизацию температуры воды, как правило, на уровне порядка 40° C. Теплообменнику помогают один или два 12-сантиметровых вентилятора, которые вращаются довольно тихо, но при этом обеспечивают вывод тепла изнутри наружу. При установке вентилятора следите за тем, чтобы стрелка на раме вентилятора показывала в сторону радиатора, а также чтобы провода питания сходились к середине.

3. Монтаж радиатора на боковую стенку

Пора прикрутить к радиатору угловые соединительные элементы для трубок. Для надежности затяните накидные гайки ключом на 16. Затягивайте крепко, однако не до упора. После этого радиатор монтируется к корпусу. Single-радиатор (то есть только с одним вентилятором) можно установить снизу за передней панелью, в том месте, где обеспечивается штатная подача воздуха. В некоторых типах корпусов для этого также может подойти пространство сзади процессора.

Наш двойной dual-радиатор требует несколько больше места, поэтому мы его располагаем на боковой стенке. Самостоятельно делать необходимые гнезда и отверстия мы рекомендуем только опытным умельцам. Если вы себя к таковым не относите, лучше всего воспользоваться специально предусмотренным корпусом для конкретного типа охлаждения. Innovatek предлагает системы охлаждения в комплекте с корпусом — при желании даже в смонтированном состоянии. Для нашего проекта мы выбрали модель Silverstone TJ06 с подготовленной Innovatek боковой стенкой.

Рисунок A: Расположите боковую стенку перед собой на рабочем столе так, чтобы отверстия под вентиляторы были направлены на вас узкими частями. После этого положите радиатор на отверстия вентиляторами вверх. Угловые соединения шлангов должны быть направлены в ту сторону, которая позже будет соединена с передней панелью корпуса. Теперь поверните боковую стенку вместе с радиатором и соедините отверстия, сделанные на корпусе с резьбой на радиаторе.

Рисунок B: Для красоты положите на гнезда вентиляторов сверху две черные заглушки и прикрутите их восемью прилагающимися черными шурупами Torx.

4. Обеспечение радиатора питанием

Стандартный вентилятор питается от напряжения 12 В. При этом он достигает указанной в спецификации скорости вращения и, таким образом, максимальной громкости. В системе водного охлаждения часть тепла поглощает кулер радиатора, поэтому 12- вольтное питание для пары наших вентиляторов, пожалуй, не понадобится. В большинстве случаев достаточно 5-7 В — это позволит сделать систему практически бесшумной. Для этого соедините разъемы питания обоих вентиляторов и подключите к прилагающемуся адаптеру, который позже будет подключен к блоку питания.

5. Установка водного кулера на графическую плату

Теперь речь пойдет о графической плате, главном источнике шума у большинства компьютеров. Мы оснастим водным охлаждением модель ATI All-in-Wonder X800XL для PCI Express. Аналогичным образом система охлаждения устанавливается и на другие модели видеоадаптеров.

Прежде чем вы приступите к сборке, еще два замечания. Первое: с переоборудованием графической платы теряет силу гарантия, поэтому перед установкой проверьте работоспособность всех функций устройства. И второе: человек при хождении по ковру заряжается статическим электричеством и разряжается при соприкосновении с металлом (например, дверной ручкой).

Если вы разрядитесь о графическую плату, при определенном стечении обстоятельств она может приказать долго жить. Поскольку же у вас, как и у большинства непрофессиональных сборщиков, вряд ли имеется антистатический коврик, кладите видеоадаптер только на антистатическую упаковку и периодически разряжайтесь, касаясь батареи отопления.

Рисунок А: Для того чтобы отсоединить вентилятор от выбранной нами модели серии Х800, необходимо открутить шесть шурупов. Два маленьких шурупа, удерживающие натяжную пружину, оптимизируют давление блока охлаждения на графический процессор, в то время как четыре остальных несут на себе всю тяжесть кулера. Даже после того как будут удалены все шесть шурупов, кулер будет все еще достаточно крепко присоединен теплопроводящей пастой. Отсоедините кулер, плавно поворачивая его по и против часовой стрелки.

Рисунок B: После того как вы снимите старую систему охлаждения, удалите остатки теплопроводящей пасты с графического процессора и других микросхем. Если паста не стирается, можно использовать немного жидкости для снятия лака. Естественно, и водная система охлаждения нуждается в теплопроводной пасте, так что нужно нанести новую. Здесь основное правило таково: чем меньше, тем лучше! Маленькой капельки, распределенной тонким слоем по поверхности каждой детали, вполне достаточно.

На самом деле теплопроводная паста является достаточно посредственным проводником тепла. Она призвана заполнять микроскопические неровности поверхности, так как воздух проводит тепло еще хуже. Для нанесения пасты в качестве миниатюрного шпателя можно использовать старую визитную карточку.

Рисунок С: После нанесения пасты положите новый кулер на рабочую поверхность таким образом, чтобы соединительные трубки были сверху, и совместите отверстия на графической плате с резьбой на блоке охлаждения. Натяжная пружина заменяется квадратной пластмассовой пластиной. Для защиты окружающих контактов наклейте между печатной платой и пластиной, точнее говоря, непосредственно к 3D-процессору, пенопластовую прокладку.

Новый кулер удерживается на трех несущих шурупах. Сперва затяните их, причем, как и при замене автомобильного колеса, вначале затягивайте шурупы не до конца, и затем по очереди их подтягивайте. Это поможет избежать перекосов. После этого аналогичным образом затяните шурупы на пластмассовой пластине.

6. Установка водного кулера на процессор

Наибольшее количество тепла чаще всего вырабатывает центральный процессор. Поэтому система охлаждения, защищая его от перегрева, работает достаточно шумно. Заменить воздушный кулер на водный достаточно просто. Сначала осторожно снимите с процессора воздушный кулер. Преодолевать сопротивление термопасты также необходимо мягкими вращательными движениями влево-вправо, иначе процессор может выскочить из сокета. После этого удалите всю старую термопасту.

Затем отвинтите имеющуюся рамку сокета и смонтируйте вместо нее подходящую для этого типа процессора рамку из набора водного охлаждения. Перед установкой кулера нанесите на процессор тонким слоем термопасту. В завершение зафиксируйте крепежные скобы с обеих сторон рамки сокета и перекиньте фиксатор.

7. Установка насоса

Насос — очень важная деталь системы, поэтому его необходимо поставить на пьедестал — в прямом смысле этого слова. Для этого ввинтите в алюминиевую плату четыре резиновые ножки. Резина здесь используется для того, чтобы изолировать вибрации насоса. На эти ножки установите насос и зафиксируйте его четырьмя прилагающимися шайбами и гайками. Гайки затяните небольшими плоскогубцами.

Теперь необходимо оснастить насос и компенсационную емкость соединительными трубками. Затяните для надежности соединения ключом на 13. В завершение подсоедините компенсационную емкость с округлой стороны насоса. Насос приделывается изнутри к передней панели корпуса, прилагающейся клейкой лентой таким образом, чтобы компенсационная емкость «смотрела» наружу (см. рис. 11).

8. Соединение элементов системы шлангами

После завершения установки всех компонентов внутри корпуса необходимо соединить их шлангами. Для этого поставьте открытый корпус напротив себя и положите перед ним боковую стенку с радиатором. Шланг должен идти от компенсационной емкости к графической плате, оттуда к процессору, от процессора к радиатору, завершается же круг соединением радиатора и насоса.

Отмерьте необходимую длину устанавливаемого шланга и ровно отрежьте его. Открутите на соединении накидную гайку и подведите ее к концу надеваемого шланга. После того как шланг надет на соединение вплоть до резьбы, зафиксируйте его накидной гайкой. Затяните гайку ключом на 16. Теперь ваша система должна выглядеть так, как это показано на рисунке 11.

9. Подготовка насоса к заполнению водой

Как это показано на нашей картинке, подключите насос к разъему питания для жестких дисков. На данном этапе к блоку питания не должно быть подключено больше ничего. Сейчас мы готовим насос к заполнению водой. Другие компоненты нельзя подключать без воды в системе охлаждения, иначе им грозит мгновенный перегрев.

Так как блоки питания не работают без подключения к материнской плате, необходимо использовать прилагающуюся перемычку. Черный провод служит для «обмана» питания материнской платы. Таким образом, после включения тумблера насос начнет работать. Если у вас под рукой не нашлось перемычки, закоротите зеленый и находящийся рядом черный провода блока питания (пины 17 и 18).

10. Наполнение водой компенсационной емкости

После того как насос запущен, его можно наполнить. Для этого используйте прилагающуюся жидкость из набора. У Innovatec это дистиллированная вода со специальными химическими добавками, позволяющими сохранять воду свежей практически бесконечно.

В крайнем случае можно использовать и обычную дистиллированную воду, однако тогда придется ее менять приблизительно каждые два года. Внимание: ни в коем случае не используйте воду из под крана! Она содержит большое количество бактерий, которые моментально образуют в вашей системе колонии и ощутимо снизят эффект охлаждения.

Наполните компенсационную емкость жидкостью до нижнего края резьбы и подождите, пока насос выкачает воду. Продолжайте процедуру наполнения до тех пор, пока в системе не прекратится бурление.

11. Завершение работы и пробный пуск

Проверьте герметичность соединений. Если на каком-либо из них образуется капелька, скорее всего, это значит, что плохо затянута накидная гайка. Если система наполнена достаточным количеством воды, но продолжается бурление, поможет следующая хитрость: возьмите двумя руками боковую стенку корпуса с радиатором и покачайте ее так, как будто это сковородка, по которой вы хотите распределить горячее масло. Если после 15 минут работы все соединения остались сухими и не возникло никаких посторонних звуков, закройте компенсационную емкость.

Теперь можно снять перемычку с блока питания и начать подключение компонентов компьютера. Некоторой сноровки потребует установка боковой стенки с радиатором. Зазоры здесь очень малы, и даже слегка неверно установленное шланговое соединение может помешать. В этом случае необходимо просто повернуть соединение в нужном направлении. Также при закрытии корпуса уделите особое внимание шлангам, чтобы ни один из них не был перегнут или сдавлен.

12. Водное охлаждение для продвинутых пользователей

Кроме процессоров и графических плат можно также оснастить водным охлаждением чипсет и высокоскоростной жесткий диск. А вот охлаждать водой блок питания мы не рекомендуем. Ни один из них не является достаточно надежным для этого — воде там не место. При желании снизить шумность блока питания можно установив в компьютере БП с пассивным охлаждением.

В водной системе следует избегать флуоресцентных добавок: есть подозрение, что они вызывают коррозию металла. Если вам не нравятся даже медленно вращающиеся вентиляторы, вновь поможет только пассивный радиатор. Его можно поместить либо на подставку рядом с корпусом, либо при наличии соответствующих навыков прикрепить к внешней стороне корпуса.

  • ТЕГИ
  • водное охлаждение
  • практика
  • Сборка ПК

ichip.ru


Смотрите также