I7 последнего поколения


Все поколения процессоров Intel Core i7: таблица, характеристики, описание

© tecnologyinformasi

Intel Core i7 – процессоры верхней ценовой категории, занимающие флагманское и субфлагманское положение в модельном ряду. До выхода Core i9 они занимали высшие положение в «табели о рангах» потребительских чипов, уступая лишь серверным Xeon. Эти ЦП выпускаются уже более 10 лет, и предназначаются для использования в топовых игровых и рабочих настольных компьютерах, способных справляться с самыми тяжелыми задачами.

За все время уже выпущено 9 генераций процессоров Intel Core i7. В отличие от младших серий i3 и i5, тут разобраться «кто есть кто» гораздо сложнее. Ведь в рамках каждой линейки выходит несколько подсерий, отличающихся и характеристиками, и назначением, и даже названиями.

Все чипы можно условно разделить на массовые, стоящие в одном ряду с i3 и i5, и продвинутые. Последние стоят на ступеньку выше, имеют собственную экосистему, свои чипсеты и сокеты материнских плат. Производитель официально относит их к так называемой X-серии.

ЦП X-серии разрабатываются как развитие предыдущего поколения архитектуры, но получают номер текущей. Это вносит путаницу, так как, например, «массовый» i7-6700 относится к 6-й генерации, как и следует из первой цифры. А вот «иксовый» i7-6800K, несмотря на шестерку в модельном номере, построен на архитектуре 5-й генерации.

Разобраться, какой процессор Intel Core i7 к какому поколению относится, чем они отличаются между собой, какие характеристики имеют, помогут наши таблица и описания, охватывающие все генерации чипов данного семейства с 2008 по 2019 год.

Процессоры без буквы – обычные модели i7, литера К означает разблокированный множитель и поддержку разгона, S – сниженное потребление энергии, T – сильно сниженное, E – предназначение для встраиваемых систем, C и R – наличие графики Iris, а буквой X маркируются самые топовые модели (Xtreme).

Таблица характеристик Intel Core i7 всех поколений

Таблица сравнения характеристик Intel Core i7

Первое поколение

Процессоры Intel Core i7 первой серии вышли в 2008. Они первыми перешли на новый нейминг, еще до появления i5 и i3. Ранние чипы, с модельными номерами i7-920, 930, 940, 950, 960, 965 и 975. Они строились по техпроцессу 45 нм, как и Core 2 Duo/Quad/Extreme. Все ЦП получили по 4 ядра, работающие в 8 потоков (технология HT). Специально для них была создана новая платформа, использующая разъем с 1336 контактами и поддерживающая трехканальную память DDR3.

Самый первый в серии: i7-965 © Techgoondu

После выхода в 2009 более доступной платформы с сокетом 1156 была выпущена серия i7 для нее, с номерами i7-860, 860S, 870, 870S, 875К и 880. Чипы мало отличались от старших (те же 4 ядра/8 потоков, с аналогичными частотами), но сборка компьютера с ними обходилась дешевле, так как материнские платы с сокетом 1156 стоили меньше. Главным отличием стало упрощение контроллера памяти, так как эта платформа поддерживала только 2 канала DDR3.

Вершиной первой генерации стали процессоры с новой архитектурой Gulftown. По слухам, изначально их хотели назвать Intel Core i9, но в итоге данный бренд ввели в обиход лишь в 2017. Эти чипы получили индексы i7-970, 980, 980X и 990X. Все они производились по новому техпроцессу 32 нм, имели по 6 ядер, работали с трехканальной памятью, и были совместимы с платами первой серии, сокет 1366.

Второе поколение

Во 2-й генерации i7 состоялся окончательный перевод производства на техпроцесс 32 нм, архитектуру сменили на Snady Bridge. В базовой серии вышли модели i7-2600, 2600S 2600К, 2700К. Они имели по 4 ядра, 8 потоков, встроенную видеокарту, работали с двухканальной памятью, ставились в платы с новым сокетом 1155.

Развитием линейки стал выход моделей Intel Core i7 под платформу 2011, пришедшую на смену 1366. Они получили номера i7-3820, 3930К, 3960Х и 3970Х. Младшая модель имела 4 ядра, старшие – по 6. Нововведением стал 4-канальный контроллер ОЗУ DDR3.

Третье поколение

i7-3770K © CyberGamer.Info

Архитектура Ivy Bridge была немного доработанной версией Sandy Bridge, переведенной на технологический процесс 22 нм. В рамках массовой линейки были выпущены чипы с индексами i7-3770, 3770S, 3770T и 3770К. Они были 4-ядерными, поддерживали 2 канала памяти DDR3, имели интегрированный ГП и сохраняли совместимость со старыми платами под LGA 1155.

В рамках X-серии были выпущены модели i7-4820К, 4930К и 4960Х. Младший имел 4 ядра, старшие – по 6. Процессоры устанавливались в сокет 2011, поддерживали 4 канала памяти DDR3.

Четвертое поколение

В 4-й серии i7 было выпущено много процессоров с архитектурой Haswell: i7-4765Т, 4770, 4770К, 4770S, 4770T, 4770TE, 4771, 4785T, 4790, 4790T, 4790S и 4790K. Все они устанавливались в платы с новым разъемом LGA 1150, имели встроенную графику HD 4600 и работали с 2-канальной памятью DDR3. Техпроцесс производства оставили прежним, 22 нм.

Верхний сегмент, то есть X-серия, включал модели 5820К, 5930К и 5960Х. Первые два имели по 4 ядра, третий – 6. Контроллер памяти перевели на DDR4, поэтому платформа сменилась. Новые платы использовали сокет 2011 v3, который имел аналогичное число контактов, но несовместимый с простым 2011.

Пятое поколение

В 5-й серии Intel не выпускала массовых Intel Core i7. Изначально это была «проба пера», компания осваивала новый техпроцесс 14 нм и архитектуру Broadwell. Фирма ограничилась двумя моделями, i7-5775C и 5775R. Это был один и тот же чип, с 4 ядрами и улучшенной интегрированной графикой Iris Pro 6200. Разница заключалась в том, что модель C ставилась в обычные платы с сокетом 1150, а R – распаивалась на плате и поставлялась в составе готовых мини-ПК и моноблоков.

Гораздо шире представлена архитектура Broadwell в X-серии. На ней были построены модели i7-6800K, 6850K, 6900K и 6950X. Первые два были 6-ядерными, третий – 8-ядерным, а i7-6950X стал первым потребительским процессором с 10 ядрами. Все они работали с 4-канальной памятью DDR4 и устанавливались в платы с гнездом LGA 2011 v3, сохраняя совместимость с платами для предшественников.

Шестое поколение

i7-6700K © Digital Trends

Освоив 14 нм, компания Intel выпустила 6-е поколение процессоров Core, представленное в массовом сегменте моделями i7-6700, 6700K, 6700T и 6700TE. Они строились на архитектуре SkyLake, имели по 4 ядра, встроенную видеокарту HD 530. В этой линейке контроллер памяти стал двойным, поддерживающим и DDR3, и DDR4. Для этого пришлось поменять платформу, перейти на разъем 1151, что привело к утрате совместимости с предшественниками.

Моделей топовой категории вышло три: i7-7800X, 7820X и 9800X. Последняя и вовсе сбивает с толку. Хоть номер 9800X и указывает на девятую генерацию, но ядра имеют архитектуру Skylake. Младший процессор располагает 6-ю ядрами, старшие – 8-ю. Все они предназначены для плат с новым сокетом 2066.

Седьмое поколение

Модели процессоров Intel Core i7 на архитектуре Kaby Lake (косметическая модернизация SkyLake) производились по техпроцессу 14 нм. Массовая серия включает i7-7700, 7700T и 7700K. Эти четырехъядерные чипы сохраняют совместимость со старыми платами под LGA 1151.

В сегменте для энтузиастов был представлен всего один чип, i7-7740X. Это четырехъядернк для платформы LGA 2066, выпущенной для топовых ЦП SkyLake.

Восьмое поколение

8-е поколение процессоров Intel Core i7 выпущено в 2017 году, под давлением конкуренции AMD. Новая архитектура Coffee Lake является легкой модернизацией Kaby Lake, поэтому чипы принципиально не отличаются от 6-й 7-й генерации. Модельный ряд включает i7-8700, 8700K и 8700T, обладающие 6-ю ядрами. В этом обновлении производитель убрал поддержку памяти DDR3 (только DDR4), а сокет обновили до 1151 v2. Из-за этого новые ЦП хоть и стают в старые платы, но не работают в них.

Особняком стоит i7-8086K, выпущенный ограниченным тиражом. Фактически он является немного разогнанной версией i7-8700K, созданной к 40-летнему юбилею выхода Intel 8086.

Девятое поколение

Процессоры Intel Core i7 9-го, последнего на данный момент (весна 2019) поколения, не получили каких-то кардинальных нововведений. Это все тот же Coffee Lake (то есть, прошедший несколько модернизаций SkyLake), производимый по нормам 14 нм. Процессоров всего два, i7-9700KF и 9700K. Они предназначены для плат с разъемом LGA 1151 v2 и отличаются от предшественников увеличенным ло 8 числом ядер, и наличием аппаратной защиты от уязвимостей Meltdown и Spectre.

hype.ru

Все поколения процессоров Intel по годам и в таблице

Всем привет, уважаемые гости блога! Сегодня будут рассмотрены поколения процессоров intel – таблица по годам, дата выхода каждого, а также как узнать какого поколения процессор в компьютере. Речь пойдет о Core I7. Pentium и I5 – темы для отдельных постов.

Краткая характеристика серии

Core i7 – топовые процессоры от Интел, занимающие флагманские и субфлагманские позиции. До появления i9 они были самыми мощными, уступая только серверным «Ксеонам». Модельный ряд производится более 10 лет и рассчитан на использование в мощных игровых и рабочих компьютерах.

За все это время создано 9 поколений этой модели ЦП. В отличие от младших моделей, запутаться в них проще, так как в каждой линейке есть несколько подсерий, которые отличаются рабочими параметрами.Условно эти чипы можно разделить на стоковые и продвинутые. Последние имеют собственную «экосистему» из соответствующих системных плат, чипсетов и сокетов. Они относятся к так называемой серии Х. Также в маркировке используются следующие обозначения:

  • K – разблокированный множитель и поддержка разгона;
  • S – сниженное энергопотребление;
  • T – очень сниженное;
  • E – ЦП для встраиваемых систем;
  • C и R – чипы с графикой Iris.

Рассмотрим историю и особенности всех поколений этой модели

1 поколение

Первая серия этой модели поступила в продажу в 2008 году. Еще до появления i3 и i5 эта линейка перешла на новый нейминг. Чипы с модельными номерами 920, 930, 940, 950, 960, 965, 975 создавались по техпроцессу 45 нм. У всех CPU было по 4 ядра, которые работали в восемь потоков.

Под эти чипы разработана новая платформа с 1336‐контактным разъемом и модулями памяти ДДР3.

После появления в 2009 году более удобного сокета 1156, выпущена серия с номерами 860, 860, S 870, 875К и 880. Характеристики не отличались от предшественников, однако сборка стоила дешевле из‐за более дешевых материнок с таким сокетом.

Контроллер упростили, поэтому поддерживалось только два канала памяти.Вершиной этого поколения стал ЦП с архитектурой Gulftown. Такие ЦП получили индексы 970, 980, 980Х и 990Х. Создавались они по 32 нм процессу и были шестиядерными. Поддерживали трехканальный режим памяти и подключались через сокет 1366.

2 поколение

Архитектуру изменили на Snady Bridge и окончательно перешли на 32 нм техпроцесс. В базовой серии были выпущены процессоры 2600, 2600S, 2600K, 2700K – четырехъядерные, восьмипотоковые, работали с одноканальной памятью и монтировались в новые 1155 сокеты.

Логичным продолжением стала модель под платформу 2011, которая сменила устаревшую 1366. Это ЦП с кодами 3820, 3930К, 3960Х, 3970Х. У младшей модели было 4 ядра, у старших 6. Новинкой стал четырехканальный контроллер для памяти DDR III.

3 поколение

Использовалась архитектура Ivy Bridge, доработанная версия предшественницы с техпроцессом 22 нм. В рамках линейки созданы чипы с индексами 3770, 3770S, 3770T, 3770K – четырехъядерные, с поддержкой двух каналов ДДР3.

Впервые применена интегрированная видеокарта. Чипы можно было монтировать на сокет 1155.

В рамках серии Х, выпущены модификации с кодовыми номерами 4820К, 4930К и 4960Х. Устанавливались в сокет 2001 и поддерживали 4 канала ДДР3.

4 поколение

Созданное большое число модификаций на архитектуре Haswell – 4765Т, 4770, 4770К, 4770S, 4770Т, 4770ТЕ, 4771, 4785Т, 4790, 4790Т, 4790S, 4790K. Монтировались на платы с новым сокетом 1150 и имели встроенный графический чип HD 4600.

Техпроцесс остался прежним – 22 нм. В рамках серии Х выпущены 5820К, 5930К и 5960Х. Контроллер перевели на память ДДР4, поэтому использовалась платформа 2011 третьей версии. Также советую почитать про разные поколения народного и популярного intel core i5.

5 поколение

Массового производства процессоров этой серии не было. Производитель осваивал 14 нм техпроцесс на архитектуре Broadwell. Создано всего две модели: 5775С и 5775R – один и тот же чип с графическим ускорителем Iris Pro 6200.

В серии Х созданы модели 6800К, 6850К, 6900К и 6950Х. Они работали с четырехканальной памятью ДДР 4 и ставились в слот 2011 третьей версии.

6 поколение

На 14 нм техпроцессе, производителем выпущено шестое поколение, представленное моделями 6700, 6700К, 6700Т и 6700ТЕ. Эти ЦП имели по четыре ядра, встроенную видеокарту HD 530 и строились на архитектуре SkyLake.

Двойной контроллер поддерживал ДДР3 и ДДР4. Монтировались на разъеме 1151. В топовой категории выпущено три модификации: 7800Х, 7820Х, 9800Х. Устанавливались они в сокет 2066.

7 поколение

Использована модернизированная архитектура Kaby Lake, которая выпускалась по техпроцессу 14 нм. Выпущены модели 7700, 7700Т и 7700К. Совместимы с платами 1151. В Х‐серии выпущен всего один чип – 7740Х, четырехъядерник для платформы 2066.

8 поколение

Чипы восьмого поколения, на основе архитектуры Coffee Lake, появились в 2017 году. В модельный ряд включены 8700, 8700К и 8700Т, которые имели по 6 ядер. Сокет обновлен до 1151 второй версии, поддержку ДДР3 убрали. Ограниченным тиражом выпущен 8086К, приуроченный к 40‐летию ЦП Intel 8086.

9 поколение

Чипы, выпущенные в 2019 году, кардинальных нововведений не получили. Использована та же архитектура и тот же техпроцесс. Пока в последнем модельном ряду два процессора: 9700KF и 9700K. Работают в таких же платах, как ЦП предыдущего поколения. Ядер у этих чипов уже по восемь.

При покупке нового процессора можно определить, к какому поколению он относится, по этому описанию. Больше никаких моделей не выпускалось, поэтому несложно свериться.

Девятое
i7‐9700KF 1151–2 14 nm 2019
i7‐9700F 2019
i7‐9700K 2018
i7‐9800X 2066 2018
Восьмое
i7‐8086K 1151–2 14 nm 2018
i7‐8700K 2017
i7‐8700 2017
i7‐8700T 2017
Седьмое
i7‐7820X 2066 14 nm 2017
i7‐7800X 2017
i7‐7740X 2017
i7‐7700K 1151–1 2017
i7‐7700 2017
i7‐7700T 2017
Шестое
i7‐6950X 2011–3 14 nm 2016
i7‐6900K 2016
i7‐6850K 2016
i7‐6800K 2016
i7‐6700K 1151–1 2015
i7‐6700 2015
i7‐6700T 2015
Пятое
i7‐5960X 2011–3 22 nm 2014
i7‐5930K 2014
i7‐5820K 2014
i7‐5775C 1150 14 nm 2015
Четвертое
i7‐4960X 2011 22 nm 2013
i7‐4930K 2013
i7‐4820K 2013
i7‐4790K 1150 2014
i7‐4790 2014
i7‐4790S 2014
i7‐4790T 2014
i7‐4785T 2014
i7‐4770K 2013
i7‐4771 2013
i7‐4770 2013
i7‐4770R BGA1364 2013
i7‐4770S 1150 2013
i7‐4770T 2013
i7‐4765T 2013
Третье
i7‐3970X 2011 32 nm 2012
i7‐3960X 2011
i7‐3930K 2011
i7‐3820 2012
i7‐3770K 1155 22 nm 2012
i7‐3770 2012
i7‐3770S 2012
i7‐3770T 2012
Второе
i7‐2700K 1155 32 nm 2011
i7‐2600K 2011
i7‐2600 2011
i7‐2600S 2011
Первое
i7‐995X 1366 32 nm 2011
i7‐990X 2011
i7‐980X 2010
i7‐980 2011
i7‐975E 45 nm 2009
i7‐970 32 nm 2010
i7‐960 45 nm 2009
i7‐965E 2008
i7‐950 2009
i7‐940 2008
i7‐930 2010
i7‐920 2008
i7‐880 1156 2010
i7‐875K 2010
i7‐870 2009
i7‐870S 2010
i7‐860 2009
i7‐860S 2010

Также для вас могут оказаться полезными публикации «Процессоры которые подходят под сокет lga 1151» и «Битва intel core i3 против i5». Буду признателен всем, кто поделится этим постом в социальных сетях. Не забывайте подписываться на обновления блога. До завтра!

С уважением, автор блога Андрей Андреев.

infotechnica.ru

От Sandy Bridge до Coffee Lake: сравниваем семь поколений Intel Core i7

Для того чтобы протестировать семь принципиально разных процессоров Intel Core i7, выпущенных за последние семь лет, нам потребовалось собрать четыре платформы с процессорными разъёмами LGA1155, LGA1150, LGA1151 и LGA1151v2. Набор комплектующих, который оказался необходим для этого, описывается следующим перечнем:

  • Процессоры:
    • Intel Core i7-8700K (Coffee Lake, 6 ядер + HT, 3,7-4,7 ГГц, 12 Мбайт L3);
    • Intel Core i7-7700K (Kaby Lake, 4 ядра + HT, 4,2-4,5 ГГц, 8 Мбайт L3);
    • Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3);
    • Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4);
    • Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
    • Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
    • Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3).
    • Процессорный кулер: Noctua NH-U14S.
  • Материнские платы:
    • ASUS ROG Maximus X Hero (LGA1151v2, Intel Z370);
    • ASUS ROG Maximus IX Hero (LGA1151, Intel Z270);
    • ASUS Z97-Pro (LGA1150, Intel Z97);
    • ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).
  • Память:
    • 2 × 8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill TridentX F3-2133C9D-16GTX);
    • 2 × 8 Гбайт DDR4-3200 SDRAM, 16-16-16-36 (G.Skill Trident Z RGB F4-3200C16D-16GTZR).
    • Видеокарта: NVIDIA Titan X (GP102, 12 Гбайт/384-бит GDDR5X, 1417-1531/10000 МГц).
    • Дисковая подсистема: Samsung 860 PRO 1TB (MZ-76P1T0BW).
    • Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise (v1709) Build 16299 с использованием следующего комплекта драйверов:

  • Intel Chipset Driver 10.1.1.45;
  • Intel Management Engine Interface Driver 11.7.0.1017;
  • NVIDIA GeForce 391.35 Driver.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Комплексные бенчмарки:

  • Futuremark PCMark 10 Professional Edition 1.0.1275 – тестирование в сценариях Essentials (обычная работа среднестатистического пользователя: запуск приложений, сёрфинг в интернете, видеоконференции), Productivity (офисная работа с текстовым редактором и электронными таблицами), Digital Content Creation (создание цифрового контента: редактирование фотографий, нелинейный видеомонтаж, рендеринг и визуализация 3D-моделей). Аппаратное ускорение OpenCL в тестировании было отключено.
  • Futuremark 3DMark Professional Edition 2.4.4264 — тестирование в сцене Time Spy Extreme 1.0.

Приложения:

  • Adobe Photoshop CC 2018 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.
  • Adobe Photoshop Lightroom Classic СС 7.1 – тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 16-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Fujifilm X-T1.
  • Adobe Premiere Pro CC 2018 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.
  • Blender 2.79b – тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели из Blender Cycles Benchmark rev4.
  • Corona 1.3 – тестирование скорости рендеринга при помощи одноимённого рендерера. Измеряется скорость построения стандартной сцены BTR, используемой для измерения производительности.
  • Google Chrome 65.0.3325.181 (64-bit) – тестирование производительности при работе интернет-приложений, построенных с использованием современных технологий. Применяется специализированный тест WebXPRT 3, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.
  • Microsoft Visual Studio 2017 (15.1) – измерение времени компиляции крупного MSVC-проекта – профессионального пакета для создания трёхмерной графики Blender версии 2.79b.
  • Stockfish 9 – тестирование скорости работы популярного шахматного движка. Измеряется скорость перебора вариантов в позиции «1q6/1r2k1p1/4pp1p/1P1b1P2/3Q4/7P/4B1P1/2R3K1 w»;
  • V-Ray 3.57.01 – тестирование производительности работы популярной системы рендеринга при помощи стандартного приложения V-Ray Benchmark;
  • VeraCrypt 1.22.9 – тестирование криптографической производительности. Используется встроенный в программу бенчмарк, задействующий тройное шифрование Kuznyechik-Serpent-Camellia.
  • WinRAR 5.50 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. Используется максимальная степень компрессии.
  • x264 r2851 — тестирование скорости транскодирования видео в формат H.264/AVC. Для оценки производительности используется исходный [email protected] AVC-видеофайл, имеющий битрейт около 30 Мбит/с.
  • x265 2.4+14 8bpp — тестирование скорости транскодирования видео в перспективный формат H.265/HEVC. Для оценки производительности используется тот же видеофайл, что и в тесте скорости транскодирования кодером x264.

Игры:

  • Ashes of Singularity. Разрешение 1920 × 1080: DirectX 11, Quality Profile = High, MSAA=2x. Разрешение 3840 × 2160: DirectX 11, Quality Profile = Extreme, MSAA=Off.
  • Assassin’s Creed: Origins. Разрешение 1920 × 1080: Graphics Quality = Very High. Разрешение 3840 × 2160: Graphics Quality = Very High.
  • Battlefield 1. Разрешение 1920 × 1080: DirectX 11, Graphics Quality = Ultra. Разрешение 3840 × 2160: DirectX 11, Graphics Quality = Ultra.
  • Civilization VI. Разрешение 1920 × 1080: DirectX 11, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra. Разрешение 3840 × 2160: DirectX 11, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra.
  • Far Cry 5. Разрешение 1920 × 1080: Graphics Quality = Ultra, Anti-Aliasing = TAA, Motion Blur = On. Разрешение 3840 × 2160: Graphics Quality = Ultra, Anti-Aliasing = TAA, Motion Blur = On.
  • Grand Theft Auto V. Разрешение 1920 × 1080: DirectX Version = DirectX 11, FXAA = Off, MSAA = x4, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum. Разрешение 3840 × 2160: DirectX Version = DirectX 11, FXAA = Off, MSAA = Off, NVIDIA TXAA = Off, Population Density = Maximum, Population Variety = Maximum, Distance Scaling = Maximum, Texture Quality = Very High, Shader Quality = Very High, Shadow Quality = Very High, Reflection Quality = Ultra, Reflection MSAA = x4, Water Quality = Very High, Particles Quality = Very High, Grass Quality = Ultra, Soft Shadow = Softest, Post FX = Ultra, In-Game Depth Of Field Effects = On, Anisotropic Filtering = x16, Ambient Occlusion = High, Tessellation = Very High, Long Shadows = On, High Resolution Shadows = On, High Detail Streaming While Flying = On, Extended Distance Scaling = Maximum, Extended Shadows Distance = Maximum.
  • The Witcher 3: Wild Hunt. Разрешение 1920 × 1080, Graphics Preset = Ultra, Postprocessing Preset = High. Разрешение 3840 × 2160, Graphics Preset = Ultra, Postprocessing Preset = High.
  • Total War: Warhammer II. Разрешение 1920 × 1080: DirectX 12, Quality = Ultra. Разрешение 3840 × 2160: DirectX 12, Quality = Ultra.
  • Watch Dogs 2. Разрешение 1920 × 1080: Field of View = 70°, Pixel Density = 1.00, Graphics Quality = Ultra, Extra Details = 100%. Разрешение 3840 × 2160: Field of View = 70°, Pixel Density = 1.00, Graphics Quality = Ultra, Extra Details = 100%.

Во всех игровых тестах в качестве результатов приводится среднее количество кадров в секунду, а также 0,01-квантиль (первая перцентиль) для значений fps. Использование 0,01-квантиля вместо показателей минимального fps обусловлено стремлением очистить результаты от случайных всплесков производительности, которые были спровоцированы не связанными напрямую с работой основных компонентов платформы причинами.

⇡#Производительность в комплексных бенчмарках

Комплексный тест PCMark 8 показывает средневзвешенную производительность систем при работе в типичных общеупотребительных приложениях разного рода. И он хорошо иллюстрирует тот прогресс, который претерпевали интеловские процессоры на каждом этапе смены дизайна. Если говорить о базовом сценарии Essentials, то тут действительно средний прирост скорости на каждом поколении не превышает пресловутых 5 процентов. Однако выделяется на общем фоне Core i7-4790K, который благодаря усовершенствованиям в микроархитектуре и росту тактовых частот смог обеспечить неплохой рывок в производительности, выходящий за среднестатистический уровень. Этот рывок виден и в сценарии Productivity, по результатам которого быстродействие Core i7-4790K сравнимо с производительностью старших процессоров в семействах Skylake, Kaby Lake и Coffee Lake.

Третий же сценарий, Digital Content Creation, объединяющий ресурсоёмкие творческие задачи, выдаёт совсем иную картину. Тут свежий Core i7-8700K может похвастать 80-процентным преимуществом перед Core i7-2700K, что можно расценить как более чем достойный результат семилетней эволюции микроархитектуры. Конечно, существенная часть этого преимущества объясняется увеличением числа вычислительных ядер, но даже если сравнивать между собой показатели четырёхъядерных Core i7-2700K и Core i7-7700K, то и в этом случае прирост скорости достигает солидной величины в 53 процента.

Ещё сильнее выпячивает преимущества новых процессоров синтетический игровой тест 3DMark. Мы пользуемся сценарием Time Spy Extreme, который имеет усиленные оптимизации под многоядерные архитектуры, и в нём итоговый рейтинг Core i7-8700K оказывается почти втрое выше, чем у Core i7-2700K. Но двукратное преимущество перед Sandy Bridge показывает и представитель поколения Kaby Lake, который, как и все предшественники, располагает четырьмя вычислительными ядрами.

Любопытно, что самым успешным усовершенствованием изначальной микроархитектуры, если судить по результатам, следует считать переход от Ivy Bridge к Haswell – на этом этапе, по данным 3D Mark, производительность выросла на 34 процента. Впрочем, Coffee Lake, безусловно, тоже есть чем похвастать, однако интеловские процессоры образца 2017-2018 года имеют точно такую же микроархитектуру, как и Skylake, а выделяются исключительно за счёт экстенсивного усиления – роста числа ядер.

⇡#Производительность в ресурсоёмких приложениях

В целом производительность в приложениях за последние семь лет эволюции процессоров Intel выросла заметно. И речь тут идёт совсем не о пяти процентах в год, о которых принято шутить в рядах интелоненавистников. Сегодняшние Core i7 превосходят своих предшественников из 2011 года более чем в два раза. Конечно, большую роль тут сыграл переход на шестиядерность, однако немалый вклад внесли и микроархитектурные улучшения, и рост тактовой частоты. Самым результативным дизайном в этом плане оказался Haswell. В нём существенно поднялась частота, а также появилась поддержка AVX2-инструкций, которая постепенно укрепились в приложениях для работы с мультимедийным контентом и в задачах рендеринга.

Стоит отметить, что в ряде случаев модернизация процессоров в системах, на которых решаются профессиональные задачи, может дать поистине прорывное улучшение скорости работы. В частности, троекратное увеличение быстродействия при переходе от Sandy Bridge к Coffee Lake можно получить при перекодировании видео современными кодерами, а также при финальном рендеринге посредством V-Ray. Неплохой прирост отмечается и при нелинейном видеомонтаже в Adobe Premiere Pro. Впрочем, даже если ваша сфера деятельности не связана напрямую с решением таких задач, в любом из проверенных нами приложений прирост составил как минимум 50 процентов.

Рендеринг:

Обработка фото:

Обработка видео:

Перекодирование видео:

Компиляция:

Архивация:

Шифрование:

Шахматы:

Интернет-сёрфинг:

Для того чтобы нагляднее представить, как менялась мощность интеловских процессоров при смене последних семи поколений микроархитектуры, мы составили специальную таблицу. В ней приведены процентные величины усреднённого прироста производительности в ресурсоёмких приложениях, получаемые при смене одного флагманского процессора серии Core i7 на другой.

Нетрудно заметить, что Coffee Lake оказался наиболее значительным обновлением дизайна массовых процессоров Intel. Полуторакратное увеличение числа ядер придаёт быстродействию существенный импульс, благодаря которому при переходе на Core i7-8700K даже с процессоров недавних поколений можно получить очень заметное ускорение. Сравнимый рост производительности в период с 2011 года у Intel случался ещё лишь однажды – при вводе процессорного дизайна Haswell (в усовершенствованном виде Devil’s Canyon). Тогда он был обусловлен серьёзными изменениями в микроархитектуре, которые были проведены одновременно с заметным увеличением тактовой частоты.

⇡#Производительность в играх

То, что производительность интеловских процессоров планомерно увеличивается, хорошо видят пользователи ресурсоёмких приложений. Однако среди игроков бытует иное мнение. Ещё бы, игры, даже самые современные, не пользуются наборами векторных инструкций, плохо оптимизируются под многопоточность, да и вообще масштабируют свою производительность гораздо более сдержанными темпами из-за того, что кроме вычислительных ресурсов нуждаются ещё и в графических. Так есть ли смысл обновлять процессоры тем, кто использует компьютеры преимущественно для игр?

Попробуем ответить и на этот вопрос. Для начала приведем результаты тестов в разрешении FullHD, где процессорозависимость проявляется сильнее, поскольку графическая карта не является серьёзным ограничением для показателя fps и даёт процессорам продемонстрировать, на что они способны, более явно.

Ситуация в разных играх похожая, поэтому давайте посмотрим на усреднённые относительные показатели игровой производительности в FullHD. Они приведены в следующей таблице, где показан прирост, получаемый при смене одного флагманского процессора серии Core i7 на другой.

Действительно, игровая производительность при выходе новых поколений процессоров масштабируется гораздо слабее, чем в приложениях. Если там можно было говорить о том, что за последние семь лет интеловские процессоры ускорились примерно вдвое, то с точки зрения игровых приложений Core i7-8700K всего лишь на 36 процентов быстрее, чем Sandy Bridge. А если сравнивать новейший Core i7 с каким-нибудь Haswell, то преимущество Core i7-8700K окажется всего лишь на уровне 11 процентов, несмотря на полуторакратное увеличение числа вычислительных ядер. Думается, игроки, не желающие обновлять свои LGA1155-системы, в чём-то правы. Такого прироста, как творческие работники – создатели контента, они не получат даже и близко.

Если же завести речь о разрешении 4K, где фокус нагрузки переносится на графический ускоритель, то осмысленность модернизации процессора кажется ещё более сомнительной. Фактически даже Core i7-2700K хватает для того, чтобы полностью раскрыть потенциал существующих в настоящее время флагманских графических ускорителей.

Различие в результатах совсем слабое, суммарно ситуация выглядит следующим образом.

Получается, что 4K-игрокам – владельцам процессоров Core i7-4790K и более поздних – волноваться сейчас вообще не о чем. Пока на рынок не придёт новое поколение графических ускорителей, при игровой нагрузке в сверхвысоких разрешениях узким местом такие CPU не окажутся, а производительность полностью упирается в видеокарту. Апгрейд процессора может иметь смысл разве только для систем, оборудованных ретропроцессорами Sandy Bridge или Ivy Bridge, но даже и в этом случае прирост частоты кадров не превысит 6-9 процентов.

⇡#Энергопотребление

Тесты производительности было бы любопытно дополнить и результатами измерения энергопотребления. За прошедшие семь лет Intel дважды меняла технологические нормы и шесть раз – заявленные рамки теплового пакета. Кроме того, процессоры Haswell и Broadwell в отличие от остальных использовали принципиально иную схему питания и снабжались интегрированным преобразователем напряжения. Всё это, естественно, так или иначе влияло на реальное потребление.

Используемый нами в тестовой системе цифровой блок питания Corsair RM850i позволяет контролировать потребляемую и выдаваемую электрическую мощность, чем мы и пользуемся для измерений. На графике ниже приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается.

В состоянии простоя ситуация принципиально поменялась с вводом в строй дизайна Broadwell, когда Intel перешла на использование 14-нм техпроцесса и внедрила в обращение более глубокие энергосберегающие режимы.

При рендеринге выясняется, что увеличение числа вычислительных ядер в Coffee Lake заметно повлияло на его энергопотребление. Этот процессор стал существенно прожорливее своих предшественников. Самыми же экономичными представителями серии Core i7 стали носители микроархитектур Broadwell и Ivy Bridge, что вполне согласуется с теми характеристиками TDP, которые для них декларирует Intel.

Интересно, что при максимально высоких нагрузках потребление Core i7-8700K похоже на потребление процессора Devil’s Canyon и уже не кажется таким запредельным. Но в целом энергетические аппетиты процессоров Core i7 разных поколений различаются очень заметно, причём более современные модели CPU не всегда становятся экономичней предшественников. Большой шаг в улучшении характеристик потребления и тепловыделения был сделан в поколении Ivy Bridge, кроме того, неплох в этом отношении и Kaby Lake. Однако сейчас, похоже, улучшение энергоэффективности флагманских десктопных процессоров перестало быть для Intel важной задачей.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Page 2

⇡#Дополнение: производительность на одинаковой тактовой частоте

Сравнительное тестирование массовых процессоров Core i7 разных поколений может быть интересно и в том случае, если все участники приведены к единой тактовой частоте. Нередко производительность более новых представителей оказывается выше за счёт того, что Intel увеличивает в них тактовые частоты. Тесты же на одинаковой частоте позволяют вычленить из общего результата экстенсивную частотную составляющую, зависящую от микроархитектуры лишь косвенно, и сосредоточиться на вопросах «интенсификации».

Производительность, измеренная безотносительно к тактовым частотам, может интересовать и энтузиастов, которые эксплуатируют CPU за пределами номинальных режимов, на частотах, сильно отличающихся от штатных значений. Руководствуясь этими соображениями, мы решили добавить в практическое сравнение дополнительную дисциплину – тесты всех процессоров на одинаковой частоте 4,5 ГГц. Данное значение частоты была выбрано исходя из того, что разогнать до неё нетрудно почти любой из интеловских процессоров последних лет выпуска. Исключить из такого сравнения пришлось лишь представителя поколения Broadwell, поскольку оверклокерский потенциал Core i7-5775C крайне ограничен и о взятии им частоты 4,5 ГГц можно и не мечтать. Остальные шесть процессоров прошли ещё один цикл тестирования.

Результаты, полученные в комплексных тестах:

Результаты тестов в ресурсоёмких приложениях:

Даже если не принимать в рассмотрение тактовую частоту как фактор, за счёт которого интеловские процессоры прибавляют в скорости, улучшение производительности более новых чипов всё равно отлично прослеживается. Усреднённое преимущество Coffee Lake перед Sandy Bridge составляет 88 процентов, а превосходство четырёхъядерных Skylake и Kaby Lake над четырёхъядерным же Sandy Bridge достигает 38 процентов. В целом весь прогресс усреднённого быстродействия в ресурсоёмких приложениях за последние семь лет у процессоров Core i7 (работающих на одинаковой тактовой частоте) представлен на графике.

Даже если отмести тот факт, что частоты интеловских процессоров хоть медленно, но всё же растут, Core i7 с каждым новым поколением становятся лучше только за счёт структурных изменений и оптимизаций в микроархитектуре. Если судить по быстродействию в приложениях для создания и обработки цифрового контента, то можно заключить, что средний прирост удельной производительности на каждом этапе составляет порядка 15 процентов.

Впрочем, в играх, в которых оптимизация программного кода под современные микроархитектуры происходит с большим отставанием, ситуация с ростом быстродействия несколько иная:

По играм отлично видно, как развитие интеловских микроархитектур остановилось на поколении Skylake, и даже увеличение числа вычислительных ядер в Coffee Lake мало помогает в наращивании игровой производительности.

Конечно, отсутствие роста удельной игровой производительности ещё не означает, что более новые Core i7 неинтересны для геймеров. В конце концов, не стоит забывать, что приведённые выше результаты касаются частоты кадров для CPU, работающих на одинаковой тактовой частоте, а более новые процессоры не только имеют более высокие номинальные частоты, но и разгоняются куда лучше старых. А это значит, что игроки из числа оверклокеров могут быть заинтересованы в переходе на Coffee Lake не из-за его микроархитектуры, которая осталась неизменной со времён Skylake, и не из-за шести ядер, дающих минимальный прирост скорости в играх, а по другой причине – благодаря оверклокерским возможностям. В частности, взятие 5-гигагерцевого рубежа для Coffee Lake – вполне посильная задача, чего про его предшественников не скажешь.

⇡#Заключение

Так сложилось, что компанию Intel принято ругать за выбранную в последние годы стратегию размеренного и неторопливого внедрения улучшений базовой архитектуры Core, которая даёт не слишком заметный прирост быстродействия при переходе на каждое следующее поколение CPU. Однако подробное тестирование показывает, что в целом реальная производительность прирастает не такими уж и вялыми темпами. Просто нужно учитывать два момента. Во-первых, многие усовершенствования, добавляемые в новые процессоры, раскрывают себя далеко не сразу, а лишь спустя некоторое время, когда программное обеспечение обретает соответствующие оптимизации. Во-вторых, пусть и небольшое, но планомерное улучшение производительности, происходящее каждый год, в сумме даёт весьма значительный эффект, если рассматривать ситуацию в контексте более продолжительных временных промежутков.

В подтверждение достаточно привести один весьма показательный факт: новейший Core i7-8700K превосходит по быстродействию своего предшественника родом из 2011 года более чем вдвое. И даже если сопоставлять новинку с процессором Core i7-4790K, который вышел в 2014 году, то окажется, что за четыре года производительность успела вырасти как минимум в полтора раза.

Впрочем, нужно понимать, что указанные выше показатели прироста касаются ресурсоёмких приложений для создания и обработки цифрового контента. И именно здесь проходит водораздел: профессиональные пользователи, которые используют свои системы для работы, получают от совершенствования процессоров куда большие дивиденды, чем те, у кого компьютер служит чисто для развлечений. И в то время как для создателей контента частая модернизация платформ и процессоров – более чем осмысленный шаг, позволяющий поднять продуктивность, про геймеров разговор получается совершенно иным.

Игровые приложения — очень консервативная отрасль, которая реагирует на какие-либо изменения в архитектуре процессоров крайне медленно. Кроме того, игровая производительность в большей мере зависит от производительности графических карт, а не процессоров. Поэтому получается так, что пользователи игровых систем развитие интеловских CPU, произошедшее за последние годы, видят совсем по-другому. Там, где «профессионалы» констатируют двукратный рост производительности, игроки получают в лучшем случае лишь 35-процентное увеличение числа fps. И это значит, что в погоне за новыми поколениями интеловских CPU для них практически нет никакого смысла. Даже старшие процессоры серий Sandy Bridge и Ivy Bridge имеют достаточную мощность для того, чтобы раскрыть потенциал графической карты уровня GeForce GTX 1080 Ti.

Таким образом, пока игроков в новых процессорах может привлечь не столько рост производительности, сколько новые возможности. Ими могут быть какие-то дополнительные функции, появляющиеся в свежих платформах, например поддержка скоростных накопителей. Или же лучший оверклокерский потенциал, пределы которого, несмотря на проблемы Intel с освоением новых технологических процессов, всё-таки постепенно отодвигаются к более отдалённым рубежам. Однако для того, чтобы игроки получили чёткий и понятный сигнал к модернизации, в первую очередь должен произойти заметный рост быстродействия игровых GPU. А до тех пор даже владельцы интеловских CPU семилетней давности будут продолжать ощущать себя совершенно не обделёнными процессорной производительностью.

Тем не менее эту ситуацию вполне способны изменить процессоры поколения Coffee Lake. Произошедшее в них увеличение числа вычислительных ядер (до шести, а в перспективе и до восьми штук) несёт в себе мощный эмоциональный заряд. За счёт этого Core i7-8700K кажется очень удачным апгрейдом практически любому пользователю ПК, ведь многие думают, что шестиядерники за счёт заложенного в них потенциала смогут оставаться актуальным вариантом в течение более продолжительного срока. Так ли это в действительности, сейчас сказать тяжело. Но, подытоживая всё сказанное выше, мы можем подтвердить, что модернизация системы с переходом на Coffee Lake в любом случае имеет куда больше смысла, чем варианты апгрейда, которые микропроцессорный гигант предлагал до сих пор.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Процессоры Intel® Core™ i7 7-го поколения Спецификации продукции

Обратитесь в службу поддержки

Вся информация, приведенная в данном документе, может быть изменена в любое время без предварительного уведомления. Корпорация Intel сохраняет за собой право вносить изменения в цикл производства, спецификации и описания продукции в любое время без уведомления. Информация в данном документе предоставлена «как есть». Корпорация Intel не делает никаких заявлений и гарантий в отношении точности данной информации, а также в отношении характеристик, доступности, функциональных возможностей или совместимости перечисленной продукции. За дополнительной информацией о конкретных продуктах или системах обратитесь к поставщику таких систем.

Анонсированные артикулы (SKUs) на данный момент недоступны. Обратитесь к графе «Дата выпуска» для получения информации о доступности продукции на рынке.

Расчетная мощность системы и максимальная расчетная мощность рассчитаны для максимально возможных показателей. Реальная расчетная мощность может быть ниже, если используются не все каналы ввода/вывода набора микросхем.

Рекомендуемая розничная цена (РРЦ) представляет собой рекомендуемую цену для продуктов Intel. Цены указаны для прямых клиентов Intel, обычно для заказов партий из 1000 шт. и могут быть изменены без уведомления. Налоги, расходы на доставку и прочие расходы не включены. Цены могут отличаться для других типов упаковки и объемов поставок, а также могут действовать условия специальных акций. Если продается в оптовой партии, цена относится к единице продукции. Указание рекомендуемых розничных цен не является официальной ценовой офертой Intel. Обратитесь к своему представителю Intel, чтобы получить официальное подтверждение цены.

ark.intel.com

Процессоры Intel Core i7 от 880 до 8700К: восемь лет эволюции LGA115x

Методика тестирования компьютерных систем образца 2017 года

Первые процессоры под маркой Intel Core i7 появились еще девять лет назад, но платформа LGA1366 на массовое распространение вне серверного сегмента не претендовала. Собственно, все «потребительские» процессоры для нее попадали в диапазон цен от ≈$300 до полновесной «штукибаксов», так что ничего удивительного в этом нет. Впрочем, и современные i7 живут в нем же, так что являются устройствами ограниченного спроса: для самых требовательных покупателей (появление Core i9 в этом году немного изменило диспозицию, но именно что совсем немного). И уже первые модели семейства получили формулу «четыре ядра — восемь потоков — 8 МиБ кэш-памяти третьего уровня».

Позднее она же была унаследована моделями для ориентированной на массовый рынок LGA1156. Позднее без изменений перекочевала в LGA1155. Еще позже «отметилась» в LGA1150 и даже LGA1151, хотя от последней изначально многие пользователи ожидали появления шестиядерных моделей процессоров. Но в первой версии платформы этого не произошло — соответствующие Core i7 и i5 появились лишь в этом году в рамках «восьмого» поколения, с «шестым» и «седьмым» несовместимого. По мнению некоторых наших читателей (которое мы частично разделяем) — немного поздновато: могли бы и раньше. Впрочем, претензия «хорошо, но мало» применима не только к производительности процессоров, а вообще к любым эволюционным изменениям на любом рынке. Причина этого лежит не в технической, а в психологической плоскости, что далеко выходит за сферу интересов нашего сайта. Вот устроить тестирование компьютерных систем разных поколений для определения их производительности и энергопотребления (пусть, хотя бы, на ограниченной выборке задач) мы можем. Чем сегодня и займемся.

Конфигурация тестовых стендов

Процессор Intel Core i7-880 Intel Core i7-2700K Intel Core i7-3770K Название ядра Технология производства Частота ядра, ГГц Кол-во ядер/потоков Кэш L1 (сумм.), I/D, КБ Кэш L2, КБ Кэш L3, МиБ Оперативная память TDP, Вт
Lynnfield Sandy Bridge Ivy Bridge
45 нм 32 нм 22 нм
3,06/3,73 3,5/3,9 3,5/3,9
4/8 4/8 4/8
128/128 128/128 128/128
4×256 4×256 4×256
8 8 8
2×DDR3-1333 2×DDR3-1333 2×DDR3-1600
95 95 77

Открывают наш парад-алле три наиболее старых процессора — один для LGA1156 и два для LGA1155. Заметим, что первые две модели по-своему уникальны. Например, Core i7-880 (появился в 2010 году — во второй волне устройств для данной платформы) был самым дорогим процессором из всех участников сегодняшнего тестирования: его рекомендованная цена составляла $562. В дальнейшем столько не стоил ни один настольный четырехъядерный Core i7. А четырехъядерные процессоры семейства Sandy Bridge (как и в предыдущем случае у нас тут представитель второй волны, а не «стартовый» i7-2600K) — единственные из всех моделей для LGA115х, использующие припой в качестве термоинтерфейса. В принципе, его внедрения тогда никто не заметил, равно как и более ранних переходов с припоя на пасту и обратно тоже: это позднее термоинтерфейс в узких, но шумных кругах начали наделять поистине волшебными свойствами. Где-то начиная с Core i7-3770K как раз (середина 2012 года), после чего шум не утихал.

Процессор Intel Core i7-4790K Intel Core i7-5775C Название ядра Технология производства Частота ядра std/max, ГГц Кол-во ядер/потоков Кэш L1 (сумм.), I/D, КБ Кэш L2, КБ Кэш L3 (L4), МиБ Оперативная память TDP, Вт
Haswell Broadwell
22 нм 14 нм
4,0/4,4 3,3/3,7
4/8 4/8
128/128 128/128
4×256 4×256
8 6 (128)
2×DDR3-1600 2×DDR3-1600
88 65

Кого нам сегодня будет несколько не хватать, так это оригинального Haswell в виде i7-4770K. В итоге 2013 год мы пропускаем и переходим сразу в 2014-й: формально 4790K — это уже Haswell Refresh. Некоторые тогда уже ждали Broadwell, но компания выпустила процессоры этого семейства исключительно на рынок планшетов и ноутбуков: где они были наиболее востребованы. А с настольными же планы несколько раз менялись, но в 2015 году пара процессоров (плюс три Xeon) на рынке появились. Очень специфические: подобно Haswell и Haswell Refresh устанавливались в разъем LGA1150, но совместимы были лишь с парой чипсетов 2014 года, а главное — оказались единственными «сокетными» моделями с четырехуровневой кэш-памятью. Формально — для нужд графического ядра, хотя на практике L4 использовать могут все программы. Подобные процессоры были и ранее, и позднее — но только в BGA-исполнении (т. е. припаивались непосредственно к системной плате). Эти же по-своему уникальны. Энтузиастов, естественно, не вдохновили из-за низких тактовых частот и ограниченной «разгоняемости», но мы проверим: как этот «боковой побег» соотносится с основной линейкой в современном ПО.

Процессор Intel Core i7-6700K Intel Core i7-7700K Intel Core i7-8700K Название ядра Технология производства Частота ядра, ГГц Кол-во ядер/потоков Кэш L1 (сумм.), I/D, КБ Кэш L2, КБ Кэш L3, МиБ Оперативная память TDP, Вт
Skylake Kaby Lake Coffee Lake
14 нм 14 нм 14 нм
4,0/4,2 4,2/4,5 3,7/4,7
4/8 4/8 6/12
128/128 128/128 192/192
4×256 4×256 6×256
8 8 12
2×DDR3-1600 / 2×DDR4-2133 2×DDR3-1600 / 2×DDR4-2400 2×DDR4-2666
91 91 95

И наиболее «свежая» тройка процессоров, формально использующая один и тот же сокет LGA1151, но в двух его несовместимых друг с другом версиях. Впрочем, о нелегком пути шестиядерных процессоров массовой линейки на рынок мы писали совсем недавно: когда их впервые и тестировали. Так что повторяться не будем. Заметим только, что i7-8700K мы протестировали заново: используя уже не предварительный, а «релизный» экземпляр, да еще и установив его на уже «нормальную» плату с отлаженной прошивкой. Результаты изменились незначительно, но в нескольких программах стали несколько более адекватными.

Процессор Intel Core i3-7350K Intel Core i5-7600K Intel Core i5-8400 Название ядра Технология производства Частота ядра, ГГц Кол-во ядер/потоков Кэш L1 (сумм.), I/D, КБ Кэш L2, КБ Кэш L3, МиБ Оперативная память TDP, Вт
Kaby Lake Kaby Lake Coffee Lake
14 нм 14 нм 14 нм
4,2 3,8/4,2 2,8/4,0
2/4 4/4 6/6
64/64 128/128 192/192
2×256 4×256 6×256
4 6 9
2×DDR4-2400 2×DDR4-2400 2×DDR4-2666
60 91 65

С кем сравнить результаты? Как нам кажется, нужно в обязательном порядке взять пару самых быстрых современных двух- и четырехъядерных процессора линеек Core i3 и Core i5, благо уже протестированы, да и интересно посмотреть, кого из старичков они догонят и где (и догонят ли). Кроме того, нам удалось достать и совсем новый шестиядерный Core i5-8400, так что воспользовались возможностью протестировать и его.

Процессор AMD FX-8350 AMD Ryzen 5 1400 AMD Ryzen 5 1600 Название ядра Технология производства Частота ядра, ГГц Кол-во ядер/потоков Кэш L1 (сумм.), I/D, КБ Кэш L2, КБ Кэш L3, МиБ Оперативная память TDP, Вт
Vishera Ryzen Ryzen
32 нм 14 нм 14 нм
4,0/4,2 3,2/3,4 3,2/3,6
4/8 4/8 6/12
256/128 256/128 384/192
4×2048 4×512 6×512
8 8 16
2×DDR3-1866 2×DDR4-2666 2×DDR4-2666
125 65 65

Без процессоров AMD обойтись никак нельзя, да и незачем. Включая и «исторический» FX-8350, являющийся ровесником Core i7-3770K. Болельщики этой линейки всегда утверждали, что он не только дешевле, но и вообще лучше — просто готовить его мало кто умеет. А вот если воспользоваться «правильными программами», то сразу всех обгонит. Мы с этого года как раз по просьбам трудящихся переработали методику тестирования в сторону «сурового многопотока», так что есть повод проверить эту гипотезу — все равно тестирование историческое. А современных моделей потребуется как минимум две. Нам бы очень подошел Ryzen 5 1500Х, очень похожий на старые Core i7, но его не тестировали. Ryzen 5 1400 формально тоже подходит... но фактически у этой модели (и у современных Ryzen 3) вместе с уполовиниванием кэш-памяти «пострадали» и связки между ССХ. Поэтому пришлось взять еще и Ryzen 5 1600, где этой проблемы нет — в результате чего и обгоняет 1400 зачастую более, чем в полтора раза. Да и пара шестиядерных процессоров Intel в сегодняшнем тестировании тоже присутствует. Прочие явно слишком медленны для сравнения с этим недорогим процессором, ну и ладно — пусть подоминирует.

Методика тестирования

Методика подробно описана в отдельной статье. Здесь же вкратце напомним, что базируется она на следующих четырех китах:

Подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97—2003). Непосредственно же в статьях мы используем уже обработанные данные. В особенности это относится к тестам приложений, где все нормируется относительно референсной системы (AMD FX-8350 с 16 ГБ памяти, видеокартой GeForce GTX 1070 и SSD Corsair Force LE 960 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2017

В принципе, утверждения поклонников AMD о том, что в «суровом многопотоке» FX были не так уж и плохи, если рассматривать только производительность, основания имеют: как видим, 8350 в принципе мог на равных конкурировать с Core i7 того же года выпуска. Впрочем, здесь он и на фоне младших Ryzen неплохо смотрится, а вот между этими двумя семействами практически ничего компанией для этого сегмента рынка не выпускалось. У Intel же наблюдается равномерная такая линейка, позволившая и в рамках «четырехъядерной» концепции удвоить производительность. Хотя ядра здесь имеют огромное значение — лучший двухъядерник 2017 года все равно не догнал четырехъядерный Core «предыдущего» поколения (напомним, что так оно официально и называется до сих пор в материалах компании, четко отделяясь от пронумерованных начиная от второго). И шестиядерные модели хороши — причем все. Так что упреки Intel в том, что компания слишком задержала их выход на рынок, можно считать в какой-то степени справедливыми.

Все отличие от предыдущей группы — код здесь не столь примитивен, так что, кроме ядер, потоков и гигагерцев, важны и архитектурные особенности выполняющих его процессоров. Хотя общий итог для продукции Intel «навскидку» вполне сопоставимый: по-прежнему двукратная разница между 880 и 7700K, по-прежнему i5-8400 уступает лишь последнему, по-прежнему i3-7350K не догнал никого. И произошло это за те же семь лет. Можно считать, что и восемь — все-таки LGA1156 на рынок вышла осенью 2009 года, а Core i7-880 от появившихся в первой волне 860 и 870 отличался лишь частотами, да и то немного.

Стоит лишь немного «ослабить» утилизацию многопоточности, так сразу улучшается положение более новых процессоров — пусть и более слабых количественно. Однако традиционные «два конца» при прочих (относительно) равных сравнение «предыдущего» и «седьмого» поколений Core нам дает. Хотя несложно заметить, что на «революционные» в максимальной степени тянут «второе» и... «восьмое». Но это более чем объяснимо: последнее увеличило количество ядер, а во «втором» радикально изменилась микроархитектура и техпроцесс, причем одновременно.

Как мы уже знаем, несколько «чудит» Adobe Photoshop (плохая новость — в последней на данный момент версии пакета проблема не исправлена; очень плохая новость — теперь она и для новых Core i3 будет актуальна), так что процессоры без HT не рассматриваем. А вот у наших основных героев поддержка данной технологии есть, так что им всем никто не мешает нормально работать. В итоге в общем и целом положение дел похоже на прочие группы, но есть нюанс: самым быстрым процессором для LGA1150 оказался не имеющий высокую частоту i7-4790K, а i7-5775C. Что ж — кое-где интенсивные методы увеличения производительности очень эффективны. Жаль, что не всегда: частотой «работать» проще. И дешевле: не нужен дополнительный кристалл eDRAM, который еще и надо как-то разместить на одной подложке с «основным».

Количество ядер как «драйвер» увеличения производительности тоже подходит — больше, чем частота даже. Хотя в нашем первом тестировании Core i7-8700K выглядел похуже, но связано это было с результатами все того же Adobe Photoshop: они оказались практически такими же, что и для i7-7700K. Переход на «релизные» процессор и плату проблему в данном случае решил: производительность оказалась аналогичной другим шестиядерным процессорам Intel. С соответствующим же улучшением общего результата в группе. Поведение других программ не изменилось — они и ранее положительно относились к увеличению количества поддерживаемых потоков вычисления при сохранении аналогичного уровня таковой частоты.

Тем более, что иногда «решает» только она, да количество потоков вычисления. В основном, конечно — нюансы и здесь определенные есть, но «против лома нет приема». Вся революционная архитектура Ryzen, например, позволила 1400 всего лишь демонстрировать производительность на уровне FX-8350 или Core i7-3770K, вышедших на рынок в 2012 году. С учетом того, что у него частота ниже обоих, да и вообще это специальная бюджетная модель, фактически использующая лишь половину полупроводникового кристалла, не так уж и плохо. Но пиетета не вызывает. Особенно на фоне другого (и тоже недорогого) представителя линейки Ryzen 5, который с легкостью и заметно обогнал любые четырехъядерные Core i7 любого года производства :)

Хоть мы и отказались от однопоточного теста распаковки, эту программу по-прежнему не удается считать слишком уж «жадной» до ядер и их частоты. Понятно почему — здесь очень важна производительность системы памяти, так что Core i7-5775C сумел обогнать только i7-8700K, да и то менее, чем на 10%. Жаль, что нет пока продуктов, где L4 сочетается с шестью ядрами и памятью с высокой ПСП: такой процессор «без узких мест» в подобных задачах мог бы явить чудо. Теоретически, по крайней мере — очевидно, что в настольных компьютеров мы ничего подобного в ближайшее время не увидим точно.

Характерно, что это ответвление от «магистральной линии» настольных процессоров демонстрирует (до сих пор!) высокие результаты и в этой группе программ. Впрочем, объединяет их в основном целевое назначение, а не выбранные программистами способы оптимизации. Но и последние не игнорируются — в отличие от некоторых более «примитивных» задач, типа кодирования видео.

К чему приходим в конечном итоге? Эффект «эволюционного развития» несколько уменьшился: Core i7-7700K обгоняет i7-880 менее, чем в два раза, а его превосходство над i7-2700K лишь полуторакратное. В целом — неплохо: это достигнуто интенсивными средствами в сопоставимых «количественных» условиях, т. е. распространимо практически на любое ПО. Однако применительно к интересам наиболее требовательных пользователей — мало. Особенно если сравнивать приросты на каждом ежегодном шаге, добавив еще Core i7-4770K (почему мы и сожалели выше, что этого процессора не нашлось).

При этом возможность резко нарастить производительность хотя бы в многопоточном ПО (а такого среди ресурсоемких программ давно уже немало) у компании была давно. Да и реализовывалась тоже — но в рамках совсем других платформ со своими особенностями. Недаром шестиядерные модели под LGA115x многие ждали еще c 2014 года... А вот от AMD многие в те годы уже никаких прорывов не ждали — тем более внушительными оказались уже первые тесты Ryzen. Неудивительно — как видим, даже недорогой Ryzen 5 1600 может конкурировать по производительности с Core i7-7700K, который всего пару месяцев назад был самым быстрым процессором для LGA1151. Теперь сходный уровень производительности вполне доступен и Core i5, но лучше бы это произошло ранее :) Во всяком случае, поводов для претензий было бы меньше.

Энергопотребление и энергоэффективность

Впрочем, вот эта диаграмма в очередной раз демонстрирует — почему производительность массовых центральных процессоров во втором десятилетии XXI века росла куда меньшими темпами, чем в первом: в данном случае все развитие происходило на фоне «неувеличения» энергопотребления. По возможности — даже уменьшения. Удалось архитектурными или какими-либо еще методами снизить — пользователи мобильных и компактных систем (которых давно уже продается намного больше, чем «типовых настольных») будут довольны. Да и на десктопном рынке небольшой шажок вперед, поскольку можно частоты еще немного подкрутить, что в Core i7-4790K было в свое время сделано, а потом закрепилось и в «обычных» Core i7, и даже в Core i5.

Особенно наглядно это видно по оценке энергопотребления собственно процессоров (к сожалению, для LGA1155 измерить его отдельно от платформы простыми средствами невозможно). Заодно становится понятным — почему у компании нет необходимости как-то менять требования к охлаждению процессоров в рамках линейки LGA115х. Также и почему все большее и большее количество продуктов в (формально) настольном ассортименте начинает укладываться в традиционные для ноутбучных процессоров теплопакеты: это само собой происходит без каких-то усилий. В принципе, можно было бы вообще установить всем четырехъядерным процессорам под LGA1151 TDP=65 Вт и не мучаться :) Просто для т. н. оверклокерских процессоров компания считает нужным ужесточить требования к системе охлаждения, поскольку есть небольшая (но и ненулевая) вероятность того, что покупатель компьютера с таковым будет его разгонять и всякими «тестами стабильности» пользоваться. А массовые продукты таких опасений не вызывают, да и изначально более экономичны. Даже шестиядерные, хотя энергопотребление старшего i7-8700K и подросло — но лишь до уровня процессоров для LGA1150. В штатном режиме, разумеется — при разгоне можно и в 2010 год вернуться ненароком :)

Но, при этом, современные экономичные процессоры вовсе не обязательно медленны — это три-пять лет назад производительность «энергоэффективных» моделей на фоне топовых в линейке зачастую оставляла желать лучшего, поскольку им приходилось слишком снижать частоту, а то и количество ядер уменьшать. Поэтому в общем и целом «энергоэффективность» повышалась куда большими темпами, чем чистая производительность: тут уже при сравнении Core i7-7700K и i7-880 не два раза, а все два с половиной. Впрочем... первый «большой скачок» и сразу в полтора раза пришелся на внедрение LGA1155, так что не удивительно, что претензии к дальнейшей эволюции платформы раздавались и с этого направления.

iXBT Game Benchmark 2017

Наибольший интерес представляют собой, разумеется, результаты самых старых процессоров, типа Core i7-880 и i7-2700K. К сожалению, с первым из них ничего путного не получилось: по-видимому, вопросами совместимости новых видеокарт с платформой конца прошлого десятилетия никто из производителей GPU серьезным образом не занимался. Да и понятно — почему: многие LGA1156 вообще пропустили, либо уже успели с нее мигрировать на другие решения за столько лет. А с Core i7-2700K другая проблема: его производительности (напомним — в штатном режиме) до сих пор зачастую достаточно, чтобы работать на уровне новых Core i7. В общем, такая вот неубиваемая легенда: которую (вместе со старшими Core i5 для LGA1155) сначала хорошим игровым процессором делала высокая однопоточная производительность (в те годы Intel сильно «зажимала» Core i3 и Pentium по частоте), а потом начали более-менее эффективно утилизироваться все восемь поддерживаемых потоков вычисления. Хотя того же уровня производительности в играх нередко достигают уже и более «простые» решения для новых платформ, но возникает иногда ощущение, что связано это не только и не столько с производительностью «в чистом виде». Поэтому тем, кого результаты в играх в какой-то степени интересуют, мы рекомендуем ознакомиться с ними при помощи полной таблицы, а здесь мы приведем лишь пару наиболее интересных и показательных диаграмм.

Вот, к примеру, Far Cry Primal. Сразу отбрасываем результаты Core i7-880: очевидна некорректная работа видеокарты на GTX 1070 с этой платформой. Возможно, кстати, это же распространимо и на LGA1155, хотя в целом частоту кадров тут низкой не назовешь: на практике достаточно. Но явно ниже, чем могло бы быть. И LGA1151 тоже как-то не блещет, а лучшей платформой выглядит LGA1150. Теперь вспоминаем, что модифицированная версия движка Dunia Engine 2 (здесь он как раз и используется) разрабатывалась между 2013 и 2014 годом, так что могли как раз и просто дооптимизироваться. Косвенным подтверждением чего являются и невысокая (относительно ожидаемой) частота кадров на Ryzen 5: вот есть ощущение, что должно быть больше, и все тут.

А вот игры на движке EGO 4.0 начали появляться с 2015 года — и тут мы уже таких артефактов не наблюдаем. За исключением Core i7-880, в очередной раз позабавившего «тормозами», но это неплохо коррелирует и с другими играми. А лучше всего выглядят не просто многоядерные процессоры, но и выпущенные начиная с 2015 года, т. е. платформы LGA1151 и AM4. Полная противоположность предыдущему случаю, хотя в целом обе игры выпущены в 2016 году. И обе в рамках одного семейства процессоров всегда «голосуют» за ту модель, в которой вычислительных ядер больше. Но в рамках одного — разные (тем более, существенно разные архитектурно) с их помощью нужно сравнивать очень осторожно. Если хочется сравнивать, конечно: в целом-то в обе (да и не только в них) на системе с процессором пятилетней давности и «хорошей» видеокартой можно поиграть с куда большим комфортом, чем при любом процессоре, но на бюджетной видеокарте долларов за 200. В общем, растут у игр требования к процессорам или нет, а игровой компьютер нужно собирать «от видеокарты». Впрочем, было бы странно, изменись что-то в этой индустрии — особенно учитывая то, что производительность видеокарт за прошедшие восемь лет совсем не в два раза выросла и даже не в три ;)

Итого

Собственно, все, что нам хотелось сделать — сравнить сразу несколько процессоров разных лет при работе с современным программным обеспечением. Тем более, что некоторые характеристики старших моделей Core i7 за это время практически не изменились, особенно если брать интервал с зимы 2011-го до аналогичного периода 2017 года. Но производительность при этом росла — медленно, но чуть более, чем часто обсуждаемые «5% в год». А с учетом того, что каждый год компьютеры нормальный пользователь не покупает, а ориентируется обычно на 3-5 лет — за такой период «набегало» и в производительности, и в экономичности, и в функциональности платформы. Но могло бы быть лучше. При этом хорошо видны некоторые «слабые места»: например, увеличение тактовой частоты в 2014 году не позволило достичь существенно более высокой производительности ни в 2015-м, ни даже в начале 2017-го. От LGA1155 «оторваться» удалось заметно (по мере оптимизации ПО под процессоры начиная с Haswell — на старте-то результаты были более скромными), и все. А потом (внезапно) +30% производительности, чего не было давно. В общем, с исторической точки зрения более плавная реализация данного процесса выглядела бы лучше. Но что было, то уже было.

www.ixbt.com

Процессоры Intel Core 7-го поколения (Kaby Lake)

3 января, в день рождения отца-основателя компании Гордона Мура (он родился 3 января 1929 г.), компания Intel анонсировала семейство новых процессоров Intel Core 7-го поколения и новые чипсеты Intel 200-й серии. У нас появилась возможность протестировать процессоры Intel Core i7-7700 и Core i7-7700K и сравнить их с процессорами предыдущего поколения.

Процессоры Intel Core 7-го поколения

Новое семейство процессоров Intel Core 7-го поколения известно под кодовым наименованием Kaby Lake, и новыми эти процессоры являются с некоторой натяжкой. Они, как и процессоры Core 6-го поколения, производятся по 14-нанометровому техпроцессу, и в их основе лежит одна и та же процессорная микроархитектура.

Напомним, что ранее, до выхода Kaby Lake, компания Intel выпускала свои процессоры в соответствии с алгоритмом «Tick-Tock» («тик-так»): раз в два года менялась процессорная микроархитектура и раз в два года менялся техпроцесс производства. Но смена микроархитектуры и техпроцесса были сдвинуты друг относительно друга на год, так что раз в год менялся техпроцесс, затем, через год, менялась микроархитектура, потом, опять через год, менялся техпроцесс, и т. д. Однако долго выдерживать столь быстрый темп компания не смогла и в итоге отказалась от этого алгоритма, заменив его на трехгодичный цикл. Первый год идет внедрение нового техпроцесса, второй год — внедрение новой микроархитектуры на базе существующего техпроцесса, а третий год — оптимизация. Таким образом, к «Tick-Tock» добавили еще год оптимизации.

Процессоры Intel Core 5-го поколения, известные под кодовым наименованием Broadwell, ознаменовали собой переход на 14-нанометровый техпроцесс («Tick»). Это были процессоры с микроархитектурой Haswell (с незначительными улучшениями), но производимые по новому 14-нанометровому техпроцессу. Процессоры Intel Core 6-го поколения, известные под кодовым наименованием Skylake («Tock»), производились по тому же 14-нанометровому техпроцессу, что и Broadwell, но имели новую микроархитектуру. А процессоры Intel Core 7-го поколения, известные под кодовым наименованием Kaby Lake, производятся по тому же 14-нанометровому техпроцессу (правда, теперь он обозначается «14+») и основаны на той же микроархитектуре Skylake, но все это оптимизировано и улучшено. В чем конкретно заключается оптимизация и что именно улучшено — пока это тайна, покрытая мраком. Данный обзор писался до официального анонса новых процессоров, и никакой официальной информации компания Intel предоставить нам не смогла, поэтому информации о новых процессорах пока еще очень мало.

Вообще, про день рождения Гордона Мура, который в 1968 году совместно с Робертом Нойсом основали компанию Intel, мы в самом начале статьи вспомнили не случайно. На протяжении многих лет этому легендарному человеку приписывали много такого, чего он никогда не говорил. Сначала его предсказание возвели в ранг закона («закон Мура»), потом этот закон стал основополагающим планом для развития микроэлектроники (эдакий аналог пятилетнего плана развития народного хозяйства СССР). Однако закон Мура при этом неоднократно приходилось переписывать и корректировать, поскольку реальность, к сожалению, спланировать можно далеко не всегда. Теперь нужно либо в очередной раз переписывать закон Мура, что, в общем-то, уже смешно, либо попросту забыть про этот так называемый закон. Собственно, в Intel так и поступили: уж раз он больше не работает, то его решили потихоньку предать забвению.

Впрочем, вернемся к нашим новым процессорам. Официально известно, что семейство процессоров Kaby Lake будет включать четыре отдельные серии: S, H, U и Y. Кроме того, будет и серия Intel Xeon для рабочих станций. Процессоры Kaby Lake-Y, ориентированные на планшеты и тонкие ноутбуки, а также некоторые модели процессоров серии Kaby Lake-U для ноутбуков уже были анонсированы ранее. А в начале января компания Intel представила лишь некоторые модели процессоров H- и S-серий. На настольные системы ориентированы процессоры S-серии, которые имеют LGA-исполнение и о которых мы будем говорить в этом обзоре. Kaby Lake-S имеют разъем LGA1151 и совместимы с материнскими платами на базе чипсетов Intel 100-й серии и новых чипсетов Intel 200-й серии. План выхода процессоров Kaby Lake-S нам не известен, но есть информация, что всего планируется 16 новых моделей для настольных ПК, которые традиционно составят три семейства (Core i7/i5/i3). Во всех процессорах для настольных систем Kaby Lake-S будет использоваться только графическое ядро Intel HD Graphics 630 (кодовое наименование Kaby Lake-GT2).

Семейство Intel Core i7 составят три процессора: 7700K, 7700 и 7700T. Все модели этого семейства имеют 4 ядра, поддерживают одновременную обработку до 8 потоков (технология Hyper-Threading) и имеют кэш L3 размером 8 МБ. Разница между ними заключается в энергопотреблении и тактовой частоте. Кроме того, топовая модель Core i7-7700K имеет разблокированный коэффициент умножения. Краткие спецификации процессоров семейства Intel Core i7 7-го поколения приведены далее.

ПроцессорCore i7-7700K Core i7-7700Core i7-7700T
Техпроцесс, нм14
РазъемLGA 1151
Количество ядер4
Количество потоков8
Кэш L3, МБ8
Номинальная частота, ГГц4,23,62,9
Максимальная частота, ГГц 4,54,23,8
TDP, Вт916535
Частота памяти DDR4/DDR3L, МГц2400/1600
Графическое ядроHD Graphics 630
Рекомендованная стоимость$339$303$303

Семейство Intel Core i5 составят семь процессоров: 7600K, 7600, 7500, 7400, 7600T, 7500T и 7400T. Все модели этого семейства имеют 4 ядра, но не поддерживают технологию Hyper-Threading. Размер их кэша L3 составляет 6 МБ. Топовая модель Core i5-7600K имеет разблокированный коэффициент умножения и TDP 91 Вт. Модели с буквой «T» имеют TDP 35 Вт, а обычные модели — TDP 65 Вт. Краткие спецификации процессоров семейства Intel Core i5 7-го поколения приведены далее.

ПроцессорCore i5-7600KCore i5-7600Core i5-7500Core i5-7600TCore i5-7500TCore i5-7400Core i5-7400T
Техпроцесс, нм14
РазъемLGA 1151
Количество ядер4
Количество потоков4
Кэш L3, МБ6
Номинальная частота, ГГц3,83,53,42,82,73,02,4
Максимальная частота, ГГц 4,24,13,83,73,33,53,0
TDP, Вт91656535356535
Частота памяти DDR4/DDR3L, МГц2400/1600
Графическое ядроHD Graphics 630
Рекомендованная стоимость$242$213$192$213$192$182$182

Семейство Intel Core i3 составят шесть процессоров: 7350K, 7320, 7300, 7100, 7300T и 7100T. Все модели этого семейства имеют 2 ядра и поддерживают технологию Hyper-Threading. Буква «T» в названии модели говорит о том, что ее TDP составляет 35 Вт. Теперь в семействе Intel Core i3 есть и модель (Core i3-7350K) с разблокированным коэффициентом умножения, TDP которой составляет 60 Вт. Краткие спецификации процессоров семейства Intel Core i3 7-го поколения приведены далее.

ПроцессорCore i3-7350KCore i3-7320Core i3-7300Core i3-7100Core i3-7300TCore i3-7100T
Техпроцесс, нм14
РазъемLGA 1151
Количество ядер2
Количество потоков4
Кэш L3, МБ444343
Номинальная частота, ГГц4,24,14,03,93,53,4
Максимальная частота, ГГц
TDP, Вт605151513535
Частота памяти DDR4/DDR3L, МГц2400/1600
Графическое ядроHD Graphics 630

Чипсеты Intel 200-й серии

Одновременно с процессорами Kaby Lake-S компания Intel анонсировала и новые чипсеты Intel 200-й серии. Точнее, пока был представлен только топовый чипсет Intel Z270, а остальные будут анонсированы чуть позже. Всего же семейство чипсетов Intel 200-й серии будет включать пять вариантов (Q270, Q250, B250, h370, Z270) для десктопных процессоров и три решения (CM238, HM175, QM175) для мобильных процессоров.

Если сопоставлять семейство новых чипсетов с семейством чипсетов 100-й серии, то здесь все очевидно: Z270 — это новый вариант Z170, h370 идет на замену h270, Q270 заменяет Q170, а чипсеты Q250 и B250 заменяют Q150 и B150 соответственно. Единственный чипсет, которому не нашлось замены, это h210. В 200-й серии нет чипсета h310 или его аналога. Позиционирование чипсетов 200-й серии точно такое же, как у чипсетов 100-й серии: Q270 и Q250 ориентированы на корпоративный рынок, Z270 и h370 ориентированы на пользовательские ПК, а B250 — на SMB-сектор рынка. Впрочем, это позиционирование весьма условно, и у производителей материнских плат часто встречается собственное ви́дение позиционирования чипсетов.

Итак, что нового в чипсетах Intel 200-й серии и чем они лучше чипсетов Intel 100-й серии? Вопрос не праздный, ведь процессоры Kaby Lake-S совместимы и с чипсетами Intel 100-й серии. Так стоит ли покупать плату на Intel Z270, если плата, к примеру, на чипсете Intel Z170 окажется дешевле (при прочих равных)? Увы, говорить о том, что у чипсетов Intel 200-й серии есть серьезные преимущества, не приходится. Практически единственное отличие новых чипсетов от старых заключается в немного увеличенном количестве HSIO-портов (высокоскоростных портов ввода/вывода) за счет добавления нескольких портов PCIe 3.0.

Далее мы подробно рассмотрим чего и сколько добавлено в каждом чипсете, а пока вкратце рассмотрим особенности чипсетов Intel 200-й серии в целом, ориентируясь при этом на топовые варианты, в которых все реализовано по максимуму.

Начнем с того, что, как и чипсеты Intel 100-й серии, новые чипсеты позволяют комбинировать 16 процессорных портов PCIe 3.0 (PEG-портов) для реализации различных вариантов слотов PCIe. Например, чипсеты Intel Z270 и Q270 (как и их аналоги Intel Z170 и Q170) позволяют комбинировать 16 PEG-портов процессора в следующих комбинациях: x16, х8/х8 или x8/x4/x4. Остальные чипсеты (h370, B250 и Q250) допускают только одну возможную комбинацию распределения PEG-портов: x16. Также чипсеты Intel 200-й серии поддерживают двухканальный режим работы памяти DDR4 или DDR3L. Кроме того, чипсеты Intel 200-й серии поддерживают возможность одновременного подключения до трех мониторов к процессорному графическому ядру (точно так же, как и в случае чипсетов 100-й серии).

Что касается портов SATA и USB, то тут ничего не изменилось. Интегрированный SATA-контроллер обеспечивает до шести портов SATA 6 Гбит/с. Естественно, поддерживается технология Intel RST (Rapid Storage Technology), которая позволяет конфигурировать SATA-контроллер в режиме RAID-контроллера (правда, не на всех чипсетах) с поддержкой уровней 0, 1, 5 и 10. Технология Intel RST поддерживается не только для SATA-портов, но и для накопителей с интерфейсом PCIe (x4/x2, разъемы M.2 и SATA Express). Возможно, говоря о технологии Intel RST, имеет смысл упомянуть и новую технологию создания накопителей Intel Optane, но на практике тут пока говорить не о чем, готовых решений еще нет. В топовых моделях чипсетов Intel 200-й серии поддерживается до 14 USB-портов, из которых до 10 портов могут быть USB 3.0, а остальные — USB 2.0.

Как и в чипсетах Intel 100-й серии, в чипсетах Intel 200-й серии реализована поддержка технологии Flexible I/O, которая позволяет конфигурировать высокоскоростные порты ввода/вывода (HSIO) — PCIe, SATA и USB 3.0. Технология Flexible I/O позволяет конфигурировать некоторые HSIO-порты как порты PCIe или USB 3.0, а некоторые HSIO-порты — как порты PCIe или SATA. В чипсетах Intel 200-й серии в совокупности может быть реализовано 30 высокоскоростных портов ввода/вывода (в чипсетах Intel 100-й серии было 26 HSIO-портов).

Шесть первых высокоскоростных портов (Port #1 — Port #6) строго фиксированы: это порты USB 3.0. Следующие четыре высокоскоростных порта чипсета (Port #7 — Port #10) могут быть сконфигурированы либо как порты USB 3.0, либо как порты PCIe. Порт Port #10 при этом может использоваться и как сетевой порт GbE, то есть в сам чипсет встроен MAC-контроллер сетевого гигабитного интерфейса, а PHY-контроллер (MAC-контроллер в связке с PHY-контроллером образуют полноценный сетевой контроллер) может быть подключен только к определенным высокоскоростным портам чипсета. В частности, это могут быть порты Port #10, Port #11, Port #15, Port #18 и Port #19. Еще 12 портов HSIO (Port #11 — Port #14, Port #17, Port #18, Port #25 — Port #30) закреплены за портами PCIe. Еще четыре порта (Port #21 — Port #24) конфигурируются либо как порты PCIe, либо как порты SATA 6 Гбит/с. Порты Port #15, Port #16 и Port #19, Port #20 имеют особенность. Они могут быть сконфигурированы либо как как порты PCIe, либо как порты SATA 6 Гбит/с. Особенность заключается в том, что один порт SATA 6 Гбит/с можно сконфигурировать либо на порте Port #15, либо на порте Port #19 (то есть это один и тот же порт SATA #0, который может быть выведен либо на Port #15, либо на Port #19). Аналогично, еще один порт SATA 6 Гбит/с (SATA #1) выводится либо на Port #16, либо на Port #20.

В результате получаем, что всего в чипсете может быть реализовано до 10 портов USB 3.0, до 24 портов PCIe и до 6 портов SATA 6 Гбит/с. Правда, тут стоит отметить еще одно обстоятельство. Одновременно к этим 20 портам PCIe может быть подключено не более 16 PCIe-устройств. Под устройствами в данном случае понимаются контроллеры, разъемы и слоты. Для подключения одного PCIe-устройства может потребоваться один, два или четыре порта PCIe. К примеру, если речь идет о слоте PCI Express 3.0 x4, то это одно PCIe-устройство, для подключения которого требуется 4 порта PCIe 3.0.

Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 200-й серии показана на рисунке.

Если сравнить с тем, что было в чипсетах Intel 100-й серии, то изменений совсем мало: добавили четыре строго фиксированных порта PCIe (HSIO-порты чипсета Port #27 — Port #30), которые можно использовать для объединения Intel RST for PCIe Storage. Все остальное, включая нумерацию HSIO-портов, осталось неизменным. Диаграмма распределения высокоскоростных портов ввода/вывода для чипсетов Intel 100-й серии показана на рисунке.

До сих пор мы рассматривали функциональные возможности новых чипсетов вообще, без привязки к конкретным моделям. Далее, в сводной таблице, приводим краткие характеристики каждого чипсета Intel 200-й серии.

ЧипсетQ270Q250B250h370Z270
Кол-во высокоскоростных портов ввода/вывода3027253030
Кол-во портов PCIe 3.0до 24до 14до 12до 20до 24
Кол-во портов SATA 6 Гбит/сдо 6до 6до 6до 6до 6
Кол-во портов USB 3.0до 10до 8 6до 8до 10
Общее кол-во USB-портов (USB 3.0 + USB 2.0)1414121414
Поддержка Intel RST for PCIe Storage 311 2 3
Возможные комбинации 16 процессорных портов PCIe 3.0x16 x8/x8

x8/x4/x4

x16x16x16x16 x8/x8

x8/x4/x4

И для сравнения приводим краткие характеристики чипсетов Intel 100-й серии.

ЧипсетQ170Q150B150h270Z170
Кол-во высокоскоростных портов ввода/вывода2623212626
Кол-во портов PCIe 3.0до 20108до 16до 20
Кол-во портов SATA 6 Гбит/сдо 6до 6до 6до 6до 6
Кол-во портов USB 3.0до 10до 86до 8до 10
Общее кол-во USB-портов (USB 3.0 + USB 2.0)1414121414
Поддержка Intel RST for PCIe Storage до 300до 2до 3
Возможные комбинации 16 процессорных портов PCIe 3.0x16 x8/x8

x8/x4/x4

x16x16x16x16 x8/x8

x8/x4/x4

Диаграмма распределения высокоскоростных портов ввода/вывода для пяти чипсетов Intel 200-й серии показана на рисунке.

И для сравнения аналогичная диаграмма для пяти чипсетов Intel 100-й серии:

И последнее, что стоит отметить, рассказывая о чипсетах Intel 200-й серии: только в чипсете Intel Z270 реализована поддержка разгона процессора и памяти.

Теперь, после нашего экспресс-обзора новых процессоров Kaby Lake-S и чипсетов Intel 200-й серии, перейдем непосредственно к тестированию новинок.

Исследование производительности

Нам удалось протестировать две новинки: топовый процессор Intel Core i7-7700K с разблокированным коэффициентом умножения и процессор Intel Core i7-7700. Для тестирования мы использовали стенд следующей конфигурации:

Системная платаAsus Strix Z270G Gaming
ЧипсетIntel Z270
Память16 ГБ DDR4-2133
Режим работы памятидвухканальный
НакопительSSD Seagate ST480FN0021 (480 ГБ)
Операционная системаWindows 10 Pro (64-битная)
Версия драйвера графического ядра21.20.16.4526

Кроме того, чтобы можно было оценить производительность новых процессоров по отношению к производительности процессоров предыдущих поколений, мы также протестировали на описанном стенде процессор Intel Core i7-6700K.

Краткие спецификации тестируемых процессоров приведены в таблице.

ПроцессорCore i7-7700K Core i7-7700Core i7-6700K
Количество ядер444
Количество потоков888
Кэш L3, МБ888
Номинальная частота, ГГц4,23,64,0
Максимальная частота, ГГц 4,54,24,2
Графическое ядроHD Graphics 630HD Graphics 630HD Graphics 530

Для оценки производительности мы использовали нашу новую методику с применением тестового пакета iXBT Application Benchmark 2017. Процессор Intel Core i7-7700K был протестировал два раза: с настройками по умолчанию и в состоянии разгона до частоты 5 ГГц. Разгон производился путем изменения коэффициента умножения.

Результаты рассчитаны по пяти прогонам каждого теста с доверительной вероятностью 95%. Обращаем внимание, что интегральные результаты в данном случае нормируются относительно референсной системы, в которой тоже используется процессор Intel Core i7-6700K. Однако конфигурация референсной системы отличается от конфигурации стенда для тестирования: в референсной системе используется материнская плата Asus Z170-WS на чипсете Intel Z170.

Результаты тестирования представлены в таблице и на диаграмме.

Логическая группа тестовCore i7-6700K (реф. система)Core i7-6700K Core i7-7700 Core i7-7700KCore i7-7700K @5 ГГц
Видеоконвертирование, баллы100104,5±0,399,6±0,3109,0±0,4122,0±0,4
MediaCoder x64 0.8.45.5852, с106±2101,0±0,5106,0±0,597,0±0,587,0±0,5
HandBrake 0.10.5, с103±298,7±0,1103,5±0,194,5±0,484,1±0,3
Рендеринг, баллы100104,8±0,399,8±0,3109,5±0,2123,2±0,4
POV-Ray 3.7, с138,1±0,3131,6±0,2138,3±0,1125,7±0,3111,0±0,3
LuxRender 1.6 x64 OpenCL, с253±2241,5±0,4253,2±0,6231,2±0,5207±2
Вlender 2.77a, с220,7±0,9210±2222±3202±2180±2
Видеоредактирование и создание видеоконтента, баллы100105,3±0,4100,4±0,2109,0±0,1121,8±0,6
Adobe Premiere Pro CC 2015.4, с186,9±0,5178,1±0,2187,2±0,5170,66±0,3151,3±0,3
Magix Vegas Pro 13, с366,0±0,5351,0±0,5370,0±0,5344±2312±3
Magix Movie Edit Pro 2016 Premium v.15.0.0.102, с187,1±0,4175±3181±2169,1±0,6152±3
Adobe After Effects CC 2015.3, с288,0±0,5237,7±0,8288,4±0,8263,2±0,7231±3
Photodex ProShow Producer 8.0.3648, с254,0±0,5241,3±4254±1233,6±0,7210,0±0,5
Обработка цифровых фотографий, баллы100104,4±0,8100±2108±2113±3
Adobe Photoshop CС 2015.5, с521±2491±2522±2492±3450±6
Adobe Photoshop Lightroom СС 2015.6.1, с182±3180±2190±10174±8176±7
PhaseOne Capture One Pro 9.2.0.118, с318±7300±6308±6283,0±0,5270±20
Распознавание текста, баллы100104,9±0,3100,6±0,3109,0±0,9122±2
Abbyy FineReader 12 Professional, с442±2421,9±0,9442,1±0,2406±3362±5
Архивирование, баллы100101,0±0,298,2±0,696,1±0,4105,8±0,6
WinRAR 5.40 СPU, с91,6±0,0590,7±0,293,3±0,595,3±0,486,6±0,5
Научные расчеты, баллы100102,8±0,799,7±0,8106,3±0,9115±3
LAMMPS 64-bit 20160516, с397±2384±3399±3374±4340±2
NAMD 2.11, с234±1223,3±0,5236±4215±2190,5±0,7
FFTW 3.3.5, мс32,8±0,633±232,7±0,933±234±4
Mathworks Matlab 2016a, с117,9±0,6111,0±0,5118±2107±194±3
Dassault SolidWorks 2016 SP0 Flow Simulation, с253±2244±2254±4236±3218±3
Скорость файловых операций, баллы100105,5±0,7102±1102±1106±2
WinRAR 5.40 Storage, с81,9±0,578,9±0,781±280,4±0,879±2
UltraISO Premium Edition 9.6.5.3237, с54,2±0,649,2±0,753±252±248±3
Скорость копирования данных, с41,5±0,340,4±0,3 40,8±0,540,8±0,5 40,2±0,1
Интегральный результат CPU, баллы100104,0±0,299,7±0,3106,5±0,3117,4±0,7
Интегральный результат Storage, баллы100105,5±0,7102±1102±1106±2
Интегральный результат производительности, баллы100104,4±0,2100,3±0,4105,3±0,4113,9±0,8

Если сравнить результаты тестирования процессоров, полученных на одном и том же стенде, то здесь все очень предсказуемо. Процессор Core i7-7700K при настройках по умолчанию (без разгона) чуть быстрее (на 7%), чем Core i7-7700, что объясняется разницей в их тактовой частоте. Разгон процессора Core i7-7700K до 5 ГГц позволяет получить выигрыш в производительности до 10% по сравнению с производительностью этого процессора без разгона. Процессор Core i7-6700K (без разгона) немного более производительный (на 4%) в сравнении с процессором Core i7-7700, что также объясняется разницей в их тактовой частоте. При этом модель Core i7-7700K на 2,5% производительнее модели предыдущего поколения Core i7-6700K.

Как видим, никакого скачка производительности новые процессоры Intel Core 7-го поколения не обеспечивают. По сути, это те же процессоры Intel Core 6-го поколения, но с чуть более высокими тактовыми частотами. Единственное преимущество новых процессоров заключается в том, что они лучше гонятся (речь, конечно, идет о процессорах K-серии с разблокированным коэффициентом умножения). В частности, наш экземпляр процессора Core i7-7700K, который мы не выбирали специально, без проблем разогнался до частоты 5,0 ГГц и абсолютно стабильно работал при использовании воздушного охлаждения. Удавалось запустить этот процессор и на частоте 5,1 ГГц, но в режиме стресс-тестирования процессора система зависала. Конечно, делать выводы по одному экземпляру процессора некорректно, но информация наших коллег подтверждает, что большинство процессоров Kaby Lake К-серии гонятся лучше, чем процессоры Skylake. Заметим, что наш образец процессора Core i7-6700K разгонялся в лучшем случае до частоты 4,9 ГГц, но стабильно работал только на частоте 4,5 ГГц.

Теперь посмотрим на энергопотребление процессоров. Напомним, что измерительный блок мы подключаем в разрыв цепей питания между блоком питания и материнской платой — к 24-контактному (ATX) и 8-контактному (EPS12V) разъемам блока питания. Наш измерительный блок способен измерять напряжение и силу тока по шинам 12 В, 5 В и 3,3 В разъема ATX, а также напряжение питания и силу тока по шине 12 В разъема EPS12V.

Под суммарной потребляемой мощностью во время выполнения теста понимается мощность, передаваемая по шинам 12 В, 5 В и 3,3 В разъема ATX и шине 12 В разъема EPS12V. Под потребляемой процессором мощностью во время выполнения теста понимается мощность, передаваемая по шине 12 В разъема EPS12V (этот разъем используется только для питания процессора). Однако нужно иметь в виду, что в данном случае речь идет об энергопотреблении процессора вместе с конвертером его напряжения питания на плате. Естественно, регулятор напряжения питания процессора имеет определенный КПД (заведомо ниже 100%), так что часть электрической энергии потребляется самим регулятором, а реальная мощность, потребляемая процессором, немного ниже измеряемых нами значений.

Результаты измерения для суммарной потребляемой мощности во всех тестах, за исключением тестов на производительность накопителя, представлены далее:

Аналогичные результаты измерения потребляемой процессором мощности таковы:

Интерес представляет, прежде всего, сравнение мощности энергопотребления процессоров Core i7-6700K и Core i7-7700К в режиме работы без разгона. Процессор Core i7-6700K имеет меньшее энергопотребление, то есть процессор Core i7-7700К немного более производительный, но у него и энергопотребление выше. Причем если интегральная производительность процессора Core i7-7700К выше на 2,5% в сравнении с производительностью Core i7-6700K, то усредненное энергопотребление процессора Core i7-7700К выше аж на 17%!

И если ввести такой показатель, как энергоэффективность, определяемый отношением интегрального показателя производительности к средней мощности энергопотребления (фактически, производительность в расчете на ватт потребленной энергии), то для процессора Core i7-7700К этот показатель составит 1,67 Вт-1, а для процессора Core i7-6700К — 1,91 Вт-1.

Впрочем, такие результаты получаются, только если сравнивать мощность энергопотребления по шине 12 В разъема EPS12V. А вот если считать полную мощность (что логичнее с точки зрения пользователя), то ситуация несколько иная. Тогда энергоэффективность системы с процессором Core i7-7700К составит 1,28 Вт-1, а с процессором Core i7-6700К — 1,24 Вт-1. Таким образом, энергоэффективность систем практически одинаковая.

Выводы

Никаких разочарований по поводу новых процессоров у нас нет. Никто и не обещал, что называется. Еще раз напомним, что речь идет не о новой микроархитектуре и не о новом техпроцессе, а всего лишь об оптимизации микроархитектуры и техпроцесса, то есть об оптимизации процессоров Skylake. Ожидать, что такая оптимизация может дать серьезный прирост производительности, конечно же, не приходится. Единственный наблюдаемый результат оптимизации заключается в том, что удалось немного повысить тактовые частоты. Кроме того, процессоры K-серии семейства Kaby Lake разгоняются лучше, чем их аналоги семейства Skylake.

Если говорить о новом поколении чипсетов Intel 200-й серии, то единственное, что отличает их от чипсетов Intel 100-й серии, это добавление четырех портов PCIe 3.0. Что это означает для пользователя? А ровным счетом ничего не означает. Ждать увеличения числа разъемов и портов на материнских платах не приходится, поскольку их и так уже чрезмерно много. В итоге функциональные возможности плат не изменятся, разве что удастся немного упростить их при проектировании: меньше придется придумывать хитроумных схем разделения, чтобы обеспечить работу всех разъемов, слотов и контроллеров в условиях нехватки линий/портов PCIe 3.0. Логично было бы предположить, что это приведет к снижению стоимости плат на чипсетах 200-й серии, но верится в это с трудом.

И в заключение несколько слов о том, имеет ли смысл менять шило на мыло. Компьютер на базе процессора Skylake и платы с чипсетом 100-й серии менять на новую систему с процессором Kaby Lake и платой с чипсетом 200-й серии нет никакого смысла. Это просто выбрасывание денег на ветер. Но если пришла пора менять компьютер по причине морального устаревания железа, то тут, конечно, имеет смысл обратить внимание на Kaby Lake и плату с чипсетом 200-й серии, причем смотреть надо в первую очередь на цены. Если система на Kaby Lake окажется сопоставима (при равной функциональности) по стоимости с системой на Skylake (и платой с чипсетом Intel 100-й серии), то смысл есть. Если же такая система окажется дороже, то в ней нет никакого смысла.

Редакция выражает признательность компании Asus за предоставленную системную плату Asus Strix Z270G Gaming

www.ixbt.com


Смотрите также