Cpu что это значит


ЦПУ - это... Что такое ЦПУ?

ЦПУ Intel 80486DX2 в керамическом корпусе PGA. Intel Celeron 400 socket 370 в пластиковом корпусе PPGA, вид снизу. Intel Celeron 400 socket 370 в пластиковом корпусе PPGA, вид сверху. Intel Celeron 1100 socket 370 в корпусе FC-PGA2, вид снизу. Intel Celeron 1100 socket 370 в корпусе FC-PGA2, вид сверху.

Центра́льный проце́ссор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших (СБИС) интегральных схем.

Изначально термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Архитектура фон Неймана

Основная статья: Архитектура фон Неймана

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

Д. фон Нейман придумал схему постройки компьютера в 1946 году.

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
  4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
  5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм полезной работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки аппаратного прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

Конвейерная архитектура

Конвейерная архитектура (pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции (Fetch)
  • адресация и выборка операнда из ОЗУ (Memory access)
  • выполнение арифметических операций (Arithmetic Operation)
  • сохранение результата операции (Store)

После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполнения m команд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n + m единиц времени.

Факторы, снижающие эффективность конвейера:

  1. простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);
  2. ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);
  3. очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора. Появление этой технологии привело к существенному увеличению производительности.

x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

Джоном Коком (John Cocke) из

Самая распространённая реализация этой архитектуры представлена процессорами серии MIPS и Alpha.

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию системы «Мультипроцессор».

Двухядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из четырёх физических ядер, что существенно влияет на скорость его работы.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхьядерные процессоры для серверов AMD Quad-Core Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona[1]. 19 ноября 2007 вышел в продажу четырёхьядерный процессор для домашних компьютеров AMD Quad-Core Phenom[2]. Эти процессоры реализуют новую микроархитектуру K8L (K10).

27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора[3]. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году.

На данный момент массово доступны двух- и четырехядерные процессоры, в частности Intel Core 2 Duo на 65 нм ядре Conroe (позднее на 45 нм ядре Wolfdale) и Athlon64X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший обьем кэша и рабочие частоты.

Компания AMD пошла по собственному пути, изготовляя четырехядерные процессоры единым кристаллом (в отличие от Intel, процессоры которой представляют собой фактически склейку двух двухядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

На настоящий момент (1-2 квартал 2009 года) обе компании обновили свои линейки четырёхядерных процессоров. Intel представила семейство Core i7, состоящее из трех моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трехканального контроллера памяти (типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой сторной платформы, использующей Core i7 является ее чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel-X58 и трехканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объем кэша (явно недостаточный у первого «Фенома»), а производство процессора было переведено на 45 нм техпроцесс, позволивший снизить тепловыделение и значительно повысить рабочие частоты. В целом AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстает от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, его рыночные перспективы выглядят куда более радужно чем у предшественника.

Кэширование

Кэширование — это использование дополнительной быстродействующей памяти (кэш-памяти) для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней. Кэш 1-го уровня имеет наименьшую латентность (время доступа), но малый размер, кроме того кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить 64 бит запись+64 бит чтение либо два 64-бит чтения за такт, AMD K8L может производить два 128 бит чтения или записи в любой комбинации, процессоры Intel Core 2 могут производить 128 бит запись+128 бит чтение за такт. Кэш 2-го уровня обычно имеет значительно большие латентности доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Параллельная архитектура

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана.

Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными. Параллельные процессоры используются в суперкомпьютерах.

Возможными вариантами параллельной архитектуры могут служить (по классификации Флинна):

Технология изготовления процессоров

История развития процессоров

Первым общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 МБ памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 ГБ оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

Современная технология изготовления

Микропроцессор Athlon XP в «безмостиковой» упаковке

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 80-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил 300$.

За годы существования технологии микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32 бит IA32 а позже в 64 бит x86-64. Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, SPARC, MIPS (RISC — архитектуры) и EPIC-архитектура).

Большинство процессоров используемых в настоящее время являются Intel-совместимыми, то есть имеют набор инструкций и пр., как процессоры компании Intel, AMD и 8086, i286 (в русском компьютерном сленге называется «двойка», «двушка»), i386 («тройка», «трёшка»), i486 («четвёрка»), Pentium II, Pentium III, Pentium 4, Core 2 Duo, Itanium и др. AMD имеет в своей линейке процессоры Amx86 (сравним с Intel 486), Sempron (сравним с Intel Celeron), Athlon 64, Athlon 64 X2,

Будущие перспективы

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

  1. Квантовые компьютеры
  2. Молекулярные компьютеры

Квантовые процессоры

Процессоры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

Российские микропроцессоры

Разработкой микропроцессоров в России занимается ЗАО «МЦСТ». Им разработаны и внедрены в производство универсальные RISC-микропроцессоры с проектными нормами 130 и 350 нм. Завершена разработка суперскалярного процессора нового поколения Эльбрус. Основные потребители российских микропроцессоров — предприятия ВПК.

История развития

Другие национальные проекты

Китай

См. также

Примечания

Ссылки

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: «Вильямс», 2007. — С. 59—241. — ISBN 0-7897-3404-4

dic.academic.ru

Что такое процессор, центральный процессор, CPU?

В наши дни процессоры играют особую роль только в рекламе, всеми силами стараются убедить, что именно процессор в компьютере является решающим компонентом, особенно такой производитель как Intel. Возникает вопрос: что такое современный процессор, да и вообще, что такое процессор?

Долгое время, а если быть точнее, то вплоть до 90 х годов производительность компьютера определял именно процессор. Процессор определял всё, но сегодня это не совсем так.

Не всё определяется центральным процессором, а процессоры от Intel не всегда предпочтительны чем от AMD. В последнее время заметно возросла роль других компонентов компьютера, а в домашних условиях процессоры редко становятся самым узким местом, но также, как и другие компоненты компьютера нуждаются в дополнительном рассмотрение, по тому что без него не может существовать ни одна вычислительная машина. Сами процессоры давно не удел нескольких видов компьютера, так как и разнообразие компьютеров стало больше.

Что такое центральный процессор

Процессор (центральный процессор) - это очень сложная микросхема обрабатывающая машинный код, отвечающая за выполнение различных операций и управление компьютерной периферии.

Для краткого обозначения центрально процессора принята аббревиатура — ЦП, а также очень распространено CPU - Central Processing Unit, что переводится как центральное обрабатывающее устройство.

Использование микропроцессоров

Такое устройство как процессор интегрируется практически в любой электронной техники, что говорить о таких устройствах как телевизор и видеоплейер, даже в игрушках, а смартфоны сами по себе уже являются компьютерами, хоть и отличающимися по конструкции.

Так и в персональном компьютере, да и всей компьютерной системе центральный процессор не является единственным. Видеоплата является ярким представителем устройства имеющего свой собственный микрочип процессора GPU (Graphics Processing Unit) – графический процессор.

Такое устройство как МФУ также имеет управляющий микрочип. Отличие таких устройств в том, что они занимаются управлением определённой функции, это является одним из их отличий от центрального процессора.

Как устроен процессор

Сам процессор состоит из десятка миллионов транзисторов, а может уже и больше, при помощи которых собраны отдельный логические схемы, находящиеся в специальном кремниевом корпусе. Именно из-за кристалла кремния очень часто его называют «Камень».

В основе внутренних схем процессора лежит арифметико-логическое устройство, внутренняя память (регистры), и кеш-память (сверх память), которые в свою очередь образуют ядро процессора, а также схемы для управления всеми операциями и схемы управления с внешними устройствами – шинами.

Разрядность процессора

Входная информация представленная данными и командами в процессор попадает через внешние шины. Обработка данных происходит в соответствие с командами в арифметико-логическом устройстве, а результат выводится при помощи устройств вывода. Чем больше разрядность всех схем процессора, тем большее количество информации возможно ему обработать за единицу времени. Делая вывод можно понять, что от разрядности центрального процессора на прямую зависит производительности компьютерной системы в целом.

Хорошим примером станет один из первых микропроцессоров для IBM PC 80286, которые были 16 разрядными. Следующая же модель процессора стала уже 32 разрядной, а 64 разрядные процессоры для ПК появились в 2014 году. Данная разрядность и по сей день остаётся основной разрядностью и используется в производстве в современных процессорах.

Тактовая частота процессора

Важную роль играет кроме разрядности процессора так называемая тактовая частота, на которую сам процессор и рассчитан. Единицей измерения тактовой частоты является мегагерц (МГц).

Один мегагерц – это миллион тактов в секунду. Соответственно 1000 мегагерц или 1 гигагерц - это миллиард тактов в секунду. Случайный из фрагментов информации участвующий в вычислительной операции, центральный процессор выполняет за один такт, из этого следует, что чем тактовая частота выше, тем процессор быстрее сможет, обрабатывает поступающие в него данные.

В принципе, работа компьютера возможна и на низких частотах, но дело в том, что процессор тратит на обработку гораздо больше времени, а вот при более высокой тактовой его частоте процессор работает быстрее.

Современней процессоры работают в разы быстрее чем их предок Intel 80286 – процессор, используемый в первом персональном компьютере.

Количество ядер процессора

Без сомнения, что сегодняшние компьютеры являются многозадачными, то есть, не обделены способностью выполнять несколько операций одновременно. Хотя до недавнего времени работа одной запущенной программы блокировала работу других, то есть была вытесняющей. При помощи быстрого переключения между задачами, рядовому пользователя очень часто казалось, что якобы его компьютер работает параллельно с несколькими программами.

На самом деле в недалёком прошлом параллельное использование операций или более распространённый термин – многозадачность, обеспечивали только много процессорные системы, но они предназначались для корпоративной вычислительной техники и соответственно не мало стояли. Только с появлением двухъядерных процессоров можно было понять, что такое истинная многозадачность. Читайте о том, как узнать число ядер и тактовую частоту процессора.

Несколько ядер центрального процессора могут совершенно разные задачи выполнять независимо друг от друга. Если компьютер выполняет только одну задачу, то и её выполнение ускоряется за счёт распараллеливания типовых операций. Производительность может приобрести довольно чёткую черту.

Коэффициент внутреннего множителя частоты

Сигналы циркулировать внутри кристалла процессора, могут на высокой частоте, хотя обращаться с внешними составляющим компьютера на одной и тоже частоте процессоры пока не могут. В связи с этим частота, на которой работает материнская плата одна, а частота работы процессора другая, более высока.

Частоту, которую процессор получает от материнской платы можно назвать опорной, он же в свою очередь производит её умножение на внутренний коэффициент, результатом чего и является внутренняя частота, называющаяся внутренним множителем.

Возможности коэффициента внутреннего множителя частоты очень часто используют оверлокеры для освобождения разгонного потенциала процессора.

Кеш-память процессора

Данные для последующей работы процессор получает из оперативной памяти, но внутри микросхем процессора сигналы обрабатываются с очень высокой частотой, а сами обращения к модулям ОЗУ проходят с частотой в разы меньше.

Высокий коэффициент внутреннего множителя частоты становится эффективнее, когда вся информация находится внутри него, в сравнение например, чем в оперативной памяти, то есть с наружи.

В процессоре немного ячеек для обработки данных, называемые регистрами, в них он обычно почти ничего не хранит, а для ускорения, как работы процессора, так и вместе с ним компьютерной системы была интегрирована технология кеширования.

Кешем можно назвать небольшой набор ячеек памяти, в свою очередь выполняющих роль буфера. Когда происходит считывание из общей памяти, копия появляется в кеш-памяти центрального процессора. Нужно это для того, чтобы при потребности в тех же данных доступ к ним был прямо под рукой, то есть в буфере, что увеличивает быстродействие.

Кеш-память в нынешних процессорах имеет пирамидальный вид:

  1. Кеш-память 1-го уровня – самая наименьшая по объёму, но в тоже время самая быстрая по скорости, входит в состав кристалла процессора. Производится по тем же технологиям, что и регистры процессора, очень дорогая, но это стоит её скорости и надёжности. Хоть и измеряется сотнями килобайт, что очень мало, но играет огромную роль в быстродействие.
  2. Кеш-память 2-го уровня – так же, как и 1-го уровня расположена на кристалле процессора и работает с частотой его ядра. В современных процессорах измеряется от сотен килобайт до нескольких мегабайт.
  3. Кеш-память 3-го уровня медленнее предыдущих уровней этого вида памяти, но является быстродейственней оперативной памяти, что немаловажно, а измеряется десятками мегабайт.

Размеры кеш-память 1-го и 2-го уровней влияют как на производительность, так и на стоимость процессора. Третий уровень кеш-памяти — это своеобразный бонус в работе компьютера, но не один из производителей микропроцессоров им пренебрегать не спешит. Кеш-память 4-го уровня существует и оправдывает себя лиши в многопроцессорных системах, именно поэтому на обыкновенно компьютере его найти не удастся.

Разъём установки процессора (Soket)

Понимание того, что современные технологии не на столько продвинуты, что процессор сможет получать информацию на расстояние, не переменно он должен крепиться, крепиться к материнской плате, устанавливаться в неё и с ней взаимодействовать. Это место крепление называется Soket и подойдёт только для определённого типа или семейства процессоров, которое у разных производителей тоже различны.

Что такое процессор: архитектура и технологический процесс

Архитектура процессора – это его внутреннее устройство, различное расположение элементов так же обуславливает его характеристики. Сама архитектура присуща целому семейству процессоров, а изменения, внесённые и направленные на улучшения или исправления ошибок, имеют название степпинг.

Технологический процесс определяет размер комплектующих самого процессора и измеряется в нанометрах (нм), а меньшие размеры транзисторов определяют меньший размер самого процессора, на что и направлена разработка будущих CPU.

Энергопотребление и тепловыделение

Само энергопотребление на прямую зависит от технологии, по которым производятся процессоры. Меньшие размеры и повышенные частоты прямо пропорционально обуславливают энергопотребление и тепловыделение.

Для понижения энергопотребления и тепловыделения выступает энергосберегающаяавтоматическая система регулировки нагрузки на процессор, соответственно при отсутствии в производительности какой-либо необходимости. Высокопроизводительные компьютеры в обязательном порядке имеют хорошую системы охлаждения процессора.

Подводя итоги материала статьи - ответа на вопрос, что такое процессор:

Процессоры наших дней имеют возможность многоканальной работы с оперативной памятью, появляются новые инструкции, в свою очередь благодаря которым повышается его функциональный уровень. Возможность обработки графики самим процессором обеспечивает понижение стоимости, как на сами процессоры, так и благодаря им на офисные и домашние сборки компьютеров. Появляются виртуальные ядра для более практичного распределения производительности, развиваются технологи, а вместе с ними компьютер и такая его составляющая как центральный процессор.

procomputer.su

Что такое центральный процессор (CPU)

Центральный процессор (CPU) — это компьютерный компонент, который отвечает за интерпретацию и выполнение большинства команд с другого оборудования и программного обеспечения компьютера.

Все устройства используют процессор, включая настольные, портативные и планшетные компьютеры, смартфоны … даже телевизор с плоским экраном.

Intel и AMD являются двумя наиболее популярными производителями процессоров для настольных компьютеров, ноутбуков и серверов, в то время как Apple , NVIDIA и Qualcomm являются крупными производителями смартфонов и планшетов.

Вы можете увидеть много разных имен, используемых для описания процессора, включая процессор, компьютерный процессор, микропроцессор, центральный процессор и «мозг компьютера».

Компьютерные мониторы или жесткие диски иногда очень неправильно упоминаются как CPU, но эти части аппаратного обеспечения выполняют совершенно разные цели и никоим образом не такие же, как у CPU.

Как процессор выглядит и где он находится

Современный процессор, как правило, небольшой и квадратный, со множеством коротких, округлых металлических разъемов на нижней стороне. Некоторые старые процессоры имеют контакты вместо металлических разъемов.

CPU подключается непосредственно к «сокету» процессора (или иногда к слоту) на материнской плате . ЦП вставлен в гнездо со штифтом вниз, а маленький рычаг помогает защитить процессор.

После запуска даже короткое время, современные процессоры могут стать очень горячими. Чтобы помочь рассеять это тепло, почти всегда необходимо прикрепить радиатор и вентилятор непосредственно к процессору. Как правило, они поставляются в комплекте с покупкой процессора.

Также доступны еще более продвинутые варианты охлаждения, включая комплекты для водяного охлаждения и устройства смены фазы.

Как упоминалось выше, не все процессоры имеют контакты на своих нижних сторонах, но в тех, которые делают, штыри легко согнуты. Будьте особенно осторожны при обращении, особенно при установке на материнскую плату.

Частота процессора

Тактовая частота процессора — это количество команд, которые он может обрабатывать в любой заданной секунде, измеренной в гигагерцах (ГГц).

Например, процессор имеет тактовую частоту 1 Гц, если он может обрабатывать каждую часть инструкции каждую секунду. Экстраполируя это на более реальный пример: процессор с тактовой частотой 3,0 ГГц может обрабатывать 3 миллиарда инструкций в секунду.

Процессорные ядра

Некоторые устройства имеют одноядерный процессор, в то время как другие могут иметь двухъядерный (или четырехъядерный и т. Д.) Как уже может показаться, наличие двух процессорных блоков, работающих бок о бок, означает, что ЦП может одновременно управлять двумя инструкциями каждую секунду, резко повышая производительность.

Некоторые процессоры могут виртуализировать два ядра для каждого доступного физического ядра, известного как Hyper-Threading . Виртуализация означает, что процессор с четырьмя ядрами может работать так, как если бы он имел восемь, а дополнительные виртуальные ядра процессора назывались отдельными потоками . Физические ядра, однако, работают лучше, чем виртуальные .

При разрешении процессора некоторые приложения могут использовать так называемую многопоточность . Если поток понимается как единое целое компьютерного процесса, то использование нескольких потоков в одном центральном ядре означает, что дополнительные инструкции могут быть поняты и обработаны сразу. Некоторое программное обеспечение может использовать эту функцию на нескольких ядрах процессора, что означает, что одновременно можно обрабатывать еще несколько инструкций.

Пример: Intel Core i3 против i5 против i7

Для более конкретного примера того, как некоторые процессоры быстрее других, давайте посмотрим, как Intel разработала свои процессоры.

Так же, как вы, вероятно, подозреваете в их названии, чипы Intel Core i7 работают лучше, чем чипы i5, которые работают лучше, чем чипы i3. Почему один лучше или хуже, чем другие, немного сложнее, но все еще довольно легко понять.

Процессоры Intel Core i3 — двухъядерные процессоры, а чипы i5 и i7 — четырехъядерные.

Turbo Boost — это функция чипов i5 и i7, которая позволяет процессору увеличить свою тактовую частоту за базовую скорость, например, от 3,0 ГГц до 3,5 ГГц, когда это необходимо. У чипов Intel Core i3 нет такой возможности. Модели процессоров, заканчивающиеся на «K», могут быть разогнанными , что означает, что эта дополнительная тактовая частота может быть принудительно использована и использоваться все время.

Hyper-Threading, как упоминалось ранее, позволяет обрабатывать два потока для каждого ядра ЦП. Это означает, что i3-процессоры с поддержкой Hyper-Threading поддерживают только четыре одновременных потока (так как они двухъядерные процессоры). Процессоры Intel Core i5 не поддерживают технологию Hyper-Threading, что означает, что они также могут работать с четырьмя потоками одновременно. Однако процессоры i7 поддерживают эту технологию, и поэтому (будучи четырехъядерными) могут обрабатывать 8 потоков одновременно.

Из-за ограничений мощности, присущих устройствам, которые не имеют постоянного питания (батареи с питанием, такие как смартфоны, планшеты и т. Д.), Их процессоры, независимо от того, являются ли они i3, i5 или i7, отличаются от настольных. Поскольку они должны найти баланс между производительностью и потреблением энергии.

Дополнительная информация о процессорах

Ни тактовая частота, ни просто количество ядер ЦП — это единственный фактор, определяющий, является ли один ЦП «лучше» другим. Это часто зависит от типа программного обеспечения, которое выполняется на компьютере, другими словами, приложений, которые будут использовать процессор.

Один процессор может иметь низкую тактовую частоту, но это четырехъядерный процессор, в то время как другой имеет высокую тактовую частоту, но является только двухъядерным процессором. Решая, какой из процессоров превосходит другой, опять же, полностью зависит от того, для чего используется процессор.

Например, программа для редактирования видео, требующая процессора, которая лучше всего работает на нескольких ядрах процессора, будет работать лучше на многоядерном процессоре с низкой тактовой частотой, чем на одноядерном процессоре с высокими тактовыми частотами. Не все программное обеспечение, игры и т. Д. Могут даже использовать больше, чем один или два ядра, что делает более доступными ядра ЦП очень бесполезными.

Другим компонентом процессора является кеш. Кэш CPU похож на временное место для широко используемых данных. Вместо того, чтобы вызывать оперативную память ( ОЗУ ) для этих элементов, ЦП определяет, какие данные, по-видимому, продолжают использовать, предполагает, что вы захотите продолжать использовать его и хранит в кэше. Кэш быстрее, чем использование ОЗУ, поскольку это физическая часть процессора; больше кеша больше пространства для хранения такой информации.

Может ли ваш компьютер работать с 32-разрядной или 64-разрядной операционной системой, зависит от размера блоков данных, которые может обрабатывать процессор. Доступ к памяти еще раз и в больших объемах с 64-разрядным процессором, чем 32-разрядный, поэтому операционные системы и приложения с 64-разрядной спецификой не могут работать на 32-разрядном процессоре.

Вы можете увидеть детали процессора компьютера, а также другую информацию об оборудовании, с большинством бесплатных системных информационных инструментов .

Каждая материнская плата поддерживает только определенный диапазон типов процессоров, поэтому перед покупкой всегда проверяйте у своего производителя материнской платы. Кстати, процессоры не всегда идеальны.

lezhnyov.ru

CPU: что это в компьютере?

Все о процессорах, ядрах, частоте и т.д.

Центральный процессор (CPU) – деталь компьютера, ответственная за интерпретацию и выполнение большинства команд других аппаратных и программных компонентов компьютера.

Во всех устройствах используется процессор, в десктопах, ноутбуках, планшетах, смартфонах … даже в вашем плоском телевизоре.

Intel и AMD – два самых известных производителей центральных процессоров для десктопов, ноутбуков и серверов, а Apple, NVIDIA, и Qualcomm – крупнейшие фирмы, изготавливающие процессоры для смартфонов и планшетов.

Вы можете встретить разные термины, обозначающие процессор, это центральное процессорное устройства, компьютерный процессор, микропроцессор, центральный процессор и «мозг компьютера».

Мониторы или жесткие диски иногда очень неправильно называют процессорами, но эти аппаратные компоненты выполняют совершенно другие функции, совсем не те, что процессор.

Как выглядит процессор и где он расположен

Современные процессоры обычно имею небольшой размер и квадратную форму, с большим количеством коротких, круглых, металлических коннекторов снизу. В более старых процессорах вместо коннекторов используются штырьки.

Процессор устанавливается в процессорный «разъем» (или иногда «слот») на материнской плате. Процессор в разъем вставляется коннектором вниз и фиксируется небольшим рычагом.

Современные процессоры сильно нагреваются, даже если работали непродолжительное время. Чтобы рассеять это тепло, практически всегда необходимо поставить непосредственно на процессор радиатор и вентилятор.

Обычно они включены в комплект при покупке.

Имеются и другие, более производительные системы охлаждения, например, комплекты водяного охлаждения или устройства, работающие на принципе фазового перехода.

Как уже говорилось ранее, не у всех процессоров имеется коннектор на нижней части, но, если он есть, его выводы очень легко погнуть. Будьте осторожны, особенно при установке его на материнскую плату.

Частота процессора

Частота процессора – количество команд, которое он может обработать за секунду и измеряется в гигагерцах (ГГц).

Например, частота процессора составляет 1 Гц, если за секунду он может обработать одну команду. Более реальный пример – процессор с частотой 3 ГГц может обработать 3 миллиарда операций за каждую секунду.

Ядра процессора

У некоторых устройств процессор с одним ядром, тогда как в других могут использоваться процессоры с двумя (или четырьмя) ядрами. Как уже понятно, два параллельно работающих процессора означает, что они смогут обработать за секунду в два раза больше команд, сильно увеличивая производительность устройства.

Некоторые процессоры способны разделять каждое физическое ядро на два виртуальных, такая технология называется Hyper-Threading. Подобная виртуализация означает, что процессор, в котором только четыре ядра, может работать так, как будто их восемь, и каждый виртуальный процессор обрабатывает отдельный поток команд. Однако физические процессоры имеют лучшую производительность, чем виртуальные.

Если позволяет процессор, некоторые приложения могут использовать так называемую многопоточность. Если рассматривать поток как отдельную часть процесса, то использование нескольких потоков в одном ядре процессора означает, что одновременно будет обрабатываться больше команд.

В некоторых программных продуктах используется подобное преимущество на нескольких ядрах процессора, что означает еще большее количество одновременно обработанных команд.

Пример: Intel Core i3 vs. i5 vs. i7

В качестве более конкретного примера того, что одни процессоры быстрее других, давайте рассмотрим, как разрабатывает свои процессоры компания Intel.

Как вы уже подозреваете по названиям, процессоры Intel Core i7 работают быстрее, чем i5, которые, в свою очередь, работают быстрее процессоров i3. Вопрос, почему одни процессоры лучше или хуже других немного сложнее, но все-таки имеет довольно понятное объяснение.

Процессоры Intel Core i3 – двухъядерные, а i5 и i7 имеют по четыре ядра.

Turbo Boost – функция процессоров i5 и i7, позволяющая им поднимать свою частоту выше номинальной, например, с 3.0 ГГц до 3.5 ГГц, когда это необходимо. У процессоров Intel Core i3 такой возможности нет. Процессоры, в названии которых последняя буква – «K» можно разгонять, то есть повышать их частоту и использовать ее все время работы.

Технология Hyper-Threading, как уже говорилось ранее, позволяет обрабатывать два потока в каждом ядре процессора. Это означает, что процессоры i3 с технологией Hyper-Threading могут обрабатывать лишь четыре потока одновременно (так как у них два ядра). Процессоры Intel Core i5 не поддерживают технологию Hyper-Threading, поэтому они могут одновременно работать с четырьмя потоками. Процессоры i7, однако, поддерживают эту технологию, и поэтому (так как они четырёхъядерные) могут одновременно обрабатывать 8 потоков.

Из-за ограничений по мощности источника питания, накладываемых устройствами, не работающими постоянно подключенными к розеткам (с питанием от батареи, например, смартфоны, планшеты и пр.) процессоры –  i3, i5, и i7 — отличаются от процессоров для настольных компьютеров тем, что имеют более сбалансированную производительность и потребляемую мощность.

Ни частота, ни количество ядер не являются единственным признаком, определяющим то, что один процессор «лучше» другого. Часто это больше зависит от типа программного обеспечения, работающего на данном компьютере – другими словами, приложениями, использующими процессор.

У одного процессора может быть низкая частота, но четыре ядра, тогда как другой может обладать высокой частотой, но только двумя ядрами. Решение, какой процессор будет работать лучше, опять же, зависит от того, для чего он будет использоваться.

Например, программа редактирования видео, зависящая от производительности процессора, будет работать лучше на процессорах с несколькими ядрами и небольшой частотой, чем на одноядерном процессоре с высокой частотой. Не все приложения, игры и другие программы используют преимущество наличия более одного или двух ядер у процессора, делая дополнительные ядра практически бесполезными.

Другой компонент процессора – кэш. Кэш процессора — это место временного хранения часто используемых данных. Вместо того, чтобы обращаться за этими данными к оперативной памяти (RAM), процессор определяет, какие данные, предположительно, еще будут использоваться, то есть вы захотите их использовать, и хранит из в кэше. Скорость обращения к кэшу быстрее, чем к оперативной памяти, так как является физической частью процессора; больший объем кэша означает, что для хранения подобных данных у процессора больше места.

Наличие 32-битной или 64-битной операционной системы на вашем компьютере определяет размер блоков данных, которые сможет обрабатывать процессор. С 64-битный процессор обращается с большим объемом памяти, чем 32-битный, вот почему 64-битные операционные системы и приложения не могут работать на 32-битном процессоре.

Вы сможете посмотреть подробную информацию о процессоре и других аппаратных компонентах вашего компьютера с помощью этих бесплатных информационных приложений

Каждая материнская плата поддерживает только определенную линейку типов процессоров, поэтому перед покупкой всегда проверяй это у производителя вашей материнской платы.

geek2u.ru

CPU и RAM в компьютере — что это такое?

Приветствую друзья! Современный компьютер состоит из нескольких устройств. Каждое из них может иметь свое обозначение, которое используется как в ПК, так и в ноутбуках, на упаковке, в инструкциях, в общем много где. Одними из таких обозначений является CPU и RAM — даже в характеристиках телефонов данные слова встречаются.

На самом деле все просто:

  1. CPU (Central Processing Unit) — процессор устройства, можно сказать самая главная часть.
  2. RAM (Random Access Memory) — оперативная память, почти такое же имеет важное значение, как и процессор.

На заметку. Вы также можете встретить термины GPU, iGPU. Здесь также все просто — GPU (Graphics Processing Unit) это графический процессор, по-простому видеокарта. iGPU — почти тоже самое, просто буква i означает integrated — встроенный, имеется ввиду встроенное графическое ядро (обычно в процессоре такое).

А теперь немного подробнее обо всем.

CPU — некоторые моменты

  1. Процессор в первую очередь отвечает за обработку команд. От скорости зависит работа ПК. Но с другой стороны — какой бы не был быстрый процессор, если не хватает оперативки — комп будет тупить. Это относится и к смартфонам.
  2. Присутствует в телефоне, смартфоне, ПК, ноутбуке.. и наверно в некоторых других устройствах.
  3. Обладает двумя важными характеристиками — частота и количество ядер. Чем больше — тем соответственно лучше.
  4. Офисный для ПК обычно имеет 2-4 ядра и частота примерно 3 ГГц.
  5. Игровой ПК — начинается от 4 ядер, частота от 3 ГГц, а лучше от 4 ГГц.
  6. На рынке ПК существует два производителя процессоров — Intel и AMD. Первые — дороже, вроде немного быстрее, вторые — более дешевле, в последнее время стали более производительны. Мой выбор — Intel, просто так сложилось, что всю жизнь их использовал, начиная с Pentium 4.
  7. Офисные процессоры неприхотливы, в то время как игровые, мощные — требуют приличного охлаждения. Иногда даже не воздушного, а водяного, которое стоит недешево.

Пример — процессор установлен в сокет материнской платы ПК:

Сокет — гнездо установки. В сокет нельзя поставить любой процессор. Например есть сокет 1150 — означает что можно установить процессоры сокета 1150 и только такие. AMD тоже нельзя установить в гнездо для Intel и наоборот.

Процессор телефона:

Здесь все намного скучнее — процессор обычный юзер заменить не может (он припаян). Мощный процессор в телефоне — это всегда приличные минусы, такие как нагрев, расход батареи. Пожалуй два основных минуса, но очень и очень весомых..

RAM — некоторые моменты

  1. Оперативная память — область, где процессор работает с данными, поэтому от ее обьема зависит быстродействие. Если ее не хватает — будут глюки, если ее хватает — будет нормально. Но важно понимать — если памяти хватает, то увеличение ее обьема эффекта уже не даст. Так как будет все упираться в процессор.
  2. Также имеет свою частоту, но она не настолько критична, как в процессоре. По той же причине тип памяти DDR3 не критически отличается от DDR4. Некоторую разницу можно заметить в играх.
  3. Windows неиспользуемую память берет для кэша. Пользователи Windows 7 жаловались что под кэш выделялось слишком много оперативки, в итоге ПК тормозил, не знаю исправили эту проблему либо нет, но у меня на Windows 10 подобных проблем никогда не было.
  4. Не стоит путать RAM и ROM — в то время как оперативная не может сохранять свое содержимое при выключении ПК, то ROM — как раз может. Но на самом деле ROM — обычная память, например в телефоне это флеш-память, а в ПК, хоть такой термин и не используется, но в принципе может означать жесткий диск, SSD. По сравнению с оперативной — очень медленная, в сотни раз, вернее даже в тысячи.
  5. Производителей памяти — достаточно, но стоящих — немного. Мой выбор — Kingston.
  6. Может работать в двух-канальном режиме. Представим материнку с 4 слотами. Часто два слота одного цвета — два другого. Представим что вам достаточно 16 гигов памяти. Оптимально взять две планки по 8 и установить их в слоты одинакового цвета — тогда они будут работать в двух-канальном режиме. Если 1 планка будет на 16 гигов — только одноканал. Если 2 планки установить в слоты разного цвета — тоже одноканал. Одноканальный режим плох только в плане скорости — разницу можно увидеть в играх и некоторых специфических задачах.

Планки на материнской плате:

Установлены кстати в двухканальном режиме — в один цвет.

По поводу двухканального режима. Чтобы память работала в нем идеально, нужно соблюдать:

  1. Одинаковую частоту. Если будет одна планка с меньшей — то обе будут работать на этой частоте.
  2. Обьем каждой планки также лучше чтобы был одинаков.
  3. Один производитель.
  4. Рекомендуются одинаковые тайминги.

Вообще эффективность двухканального режима зависит от идентичности планок, поэтому в продаже часто можно встретить так называемые киты памяти, или наборы — там все планки идентичны. Да, такой набор — идеальное решение. Пример памяти, которая шла в комплекте кит:

Планки с радиаторами обеспечивают эффективное охлаждение, особенно актуально при разгоне. Однако радиаторы увеличивают стоимость. Многие покупают наоборот — без радиаторов и направляют потом на планки поток воздуха вентилятора.

Работа двухканального режима зависит от материнки. Но многие современные материнки — поддерживают. Модели для оч производительных ПК — поддерживают трехканальный режим, например некоторые платы на устаревшем уже сокете 1366 — поддерживали три канала.

Вывод

Надеюсь моя информация вам помогла и вы смогли узнать что такое RAM и CPU, ведь вы можете встретить эти обозначения везде — теперь будете знать что они означают))

Пора прощаться. Удачи вам, здоровья и добра!

990x.top

В чем разница между CPU и GPU?

Все мы знаем, что у видеокарты и процессора несколько различные задачи, однако знаете ли вы, чем они отличаются друг от друга во внутренней структуре? Как CPU (англ. — central processing unit), так и GPU (англ. — graphics processing unit) являются процессорами, и между ними есть много общего, однако сконструированы они были для выполнения различных задач. Подробнее об этом вы узнаете из данной статьи.

CPU

Основная задача CPU, если говорить простыми словами, это выполнение цепочки инструкций за максимально короткое время. CPU спроектирован таким образом, чтобы выполнять несколько таких цепочек одновременно или разбивать один поток инструкций на несколько и, после выполнения их по отдельности, сливать их снова в одну, в правильном порядке. Каждая инструкция в потоке зависит от следующих за ней, и именно поэтому в CPU так мало исполнительных блоков, а весь упор делается на скорость выполнения и уменьшение простоев, что достигается при помощи кэш-памяти и конвейера.

GPU

Основная функция GPU — рендеринг 3D графики и визуальных эффектов, следовательно, в нем все немного проще: ему необходимо получить на входе полигоны, а после проведения над ними необходимых математических и логических операций, на выходе выдать координаты пикселей. По сути, работа GPU сводится к оперированию над огромным количеством независимых между собой задач, следовательно, он содержит большой объем памяти, но не такой быстрой, как в CPU, и огромное количество исполнительных блоков: в современных GPU их 2048 и более, в то время как у CPU их количество может достигать 48, но чаще всего их количество лежит в диапазоне 2-8.

Основные отличия

CPU отличается от GPU в первую очередь способами доступа к памяти. В GPU он связанный и легко предсказуемый — если из памяти читается тексел текстуры, то через некоторое время настанет очередь и соседних текселов. С записью похожая ситуация — пиксель записывается во фреймбуфер, и через несколько тактов будет записываться расположенный рядом с ним.  Также графическому процессору, в отличие от универсальных процессоров, просто не нужна кэш-память большого размера, а для текстур требуются лишь 128–256 килобайт. Кроме того, на видеокартах применяется более быстрая память, и в результате GPU доступна в разы большая пропускная способность, что также весьма важно для параллельных расчетов, оперирующих с огромными потоками данных.

Есть множество различий и в поддержке многопоточности: CPU исполняет 1–2 потока вычислений на одно процессорное ядро, а GPU может поддерживать несколько тысяч потоков на каждый мультипроцессор, которых в чипе несколько штук! И если переключение с одного потока на другой для CPU стоит сотни тактов, то GPU переключает несколько потоков за один такт.

В CPU большая часть площади чипа занята под буферы команд, аппаратное предсказание ветвления и огромные объемы кэш-памяти, а в GPU большая часть площади занята исполнительными блоками. Вышеописанное устройство схематично изображено ниже:

Разница в скорости вычислений

Если CPU — это своего рода «начальник», принимающий решения в соответствии с указаниями программы, то GPU — это «рабочий», который производит огромное количество однотипных вычислений. Выходит, что если подавать на GPU независимые простейшие математические задачи, то он справится значительно быстрее, чем центральный процессор. Данным отличием успешно пользуются майнеры биткоинов.

Майнинг Bitcoin

Суть майнинга заключается в том, что компьютеры, находящиеся в разных точках Земли, решают математические задачи, в результате которых создаются биткоины. Все биткоин-переводы по цепочке передаются майнерам, чья работа состоит в том, чтобы подобрать из миллионов комбинаций один-единственный хэш, подходящий ко всем новым транзакциям и секретному ключу, который и обеспечит майнеру получение награды в 25 биткоинов за раз. Так как скорость вычисления напрямую зависит от количества исполнительных блоков, получается, что GPU значительно лучше подходят для выполнения данного типа задачи, нежели CPU. Чем больше количество произведенных вычислений, тем выше шанс получить биткоины. Дело даже дошло до сооружения целых ферм из видеокарт:

По материалам Wikipedia, habrahabr.ru и edu.chpc.ru

tproger.ru


Смотрите также