Что такое ядро это


Ядро

Генетическая информация эукариотической клетки хранится в особой двумембранной органелле – ядре. В нём находится более 90 % ДНК.

Понятие, что такое ядро в биологии и какие функции оно выполняет, укрепилось в научной среде только в начале XIX века. Однако впервые ядро в клетках лосося наблюдал натуралист Антони ван Левенгук ещё в 1670-х годах. Термин предложил ботаник Роберт Броун в 1831 году.

Ядро – наиболее крупный органоид клетки (до 6 мкм), который состоит из трёх частей:

  • двойной мембраны;
  • нуклеоплазмы;
  • ядрышка.

Рис. 1. Внутреннее строение ядра.

Ядро отделяется от цитоплазмы двойной мембраной, имеющей поры, через которые осуществляется избирательный транспорт веществ в цитоплазму и обратно. Пространство между двумя оболочками называется перинуклеарным. Внутренняя оболочка выстелена изнутри ядерным матриксом, который играет роль цитоскелета и обеспечивает структурную поддержку ядра. Матрикс содержит ядерную ламину, отвечающую за формирование хроматина.

Под мембранной оболочкой находится вязкая жидкость, которая называется нуклеоплазмой или кариоплазмой. Она содержит:

  • хроматин, состоящий из белка, ДНК и РНК;
  • отдельные нуклеотиды;
  • нуклеиновые кислоты;
  • белки;
  • воду;
  • ионы.

В соответствии с плотностью скручивания хроматин может быть двух видов:

  • эухроматин – деконденсированный (разрыхлённый) хроматин в неделящемся ядре;
  • гетерохроматин – конденсированный (плотно скрученный) хроматин в делящемся ядре.

Часть хроматина всегда находится в скрученном состоянии, часть – в свободном.

Рис. 2. Хроматин.

Обычно гетерохроматин называют хромосомой. Хромосомы хорошо видны в микроскоп при митотическом делении клетки. Совокупность признаков хромосом (размер, форма, количество) называется кариотипом. В кариотип входят аутосомы и гоносомы. Аутосомы несут информацию о признаках живого организма. Гоносомы определяют пол.

Внешняя оболочка переходит в эндоплазматическую сеть или ретикулум (ЭПР), образуя складки. На поверхности мембраны ЭПР находятся рибосомы, отвечающие за биосинтез белка.

Ядрышко представляет собой плотную структуру без мембраны. По сути это уплотнённый участок нуклеоплазмы с хроматином. Состоит из рибонуклеопротеидов (РНП). Здесь происходит синтез рибосомной РНК, хроматина и нуклеоплазмы. Ядро может содержать несколько мелких ядрышек. Впервые ядрышко было открыто в 1774 году, но его функции стали известны лишь к середине ХХ века.

Рис. 3. Ядрышко.

Эритроциты млекопитающих и клетки ситовидных трубок растений не содержат ядра. Клетки поперечнополосатых мышц содержат несколько небольших ядер.

Основными функциями ядра являются:

  • контроль всех процессов жизнедеятельности клетки, в том числе синтез белков;
  • синтез некоторых белков, рибосом, нуклеиновых кислот;
  • хранение генетического материала;
  • передача ДНК следующим поколениям при делении.

Клетка без ядра погибает. Однако клетки с пересаженным ядром восстанавливают жизнеспособность, получая генетическую информацию клетки-донора.

Ядро образуют двойная мембрана, нуклеоплазма, ядрышко. Мембрана осуществляет транспорт веществ в цитоплазму и обратно и образует ЭПР вокруг ядра. Нуклеоплазма заполняет ядро и содержит множество веществ, в том числе хроматин, отвечающий за передачу наследственной информации. Ядрышко – уплотнение нуклеоплазмы, осуществляющее синтез рибосом и хроматина.

Средняя оценка: 4.6. Всего получено оценок: 264.

Page 2

Образовака Биология

  • Роль бактерий в природе и жизни человекаТест
  • Охраняемые виды покрытосеменных растенийТест
  • ФотосинтезТест

obrazovaka.ru

Что такое ядро в биологии? Строение и функции ядра

В каждой живой клетке протекает множество биохимических реакций и процессов. Чтобы контролировать их, а также регулировать многие жизненно важные факторы, необходима специальная структура. Что такое ядро в биологии? Благодаря чему оно эффективно справляется с поставленной задачей?

Что такое ядро в биологии. Определение

Ядро – необходимая структура любой клетки организма. Что такое ядро? В биологии это важнейший компонент каждого организма. Ядро можно обнаружить и у одноклеточных простейших, и у высокоорганизованных представителей эукариотического мира. Главная функция этой структуры – хранение и передача генетической информации, которая здесь же и содержится.

После оплодотворения яйцеклетки сперматозоидом происходит слияние двух гаплоидных ядер. После слияния половых клеток образуется зигота, ядро которой уже несет диплоидный набор хромосом. Это значит, что кариотип (генетическая информация ядра) уже содержит копии генов и матери, и отца.

Диплоидное ядро присутствует практически во всех эукариотических клетках. Гаплоидным ядром обладают не только гаметы, но и многие представители простейших организмов. Сюда относятся некоторые одноклеточные паразиты, водоросли, свободноживущие формы одноклеточных. Стоит отметить, что большинство из перечисленных представителей имеют гаплоидное ядро лишь на определенной стадии жизненного цикла.

Какова характеристика ядра? Биология тщательно изучает состав ядерного аппарата, т. к. это может дать толчок в развитии генетики, селекции и молекулярной биологии.

Ядро – это двумембранная структура. Мембраны являются продолжением эндоплазматической сети, что необходимо для транспорта образованных веществ из клетки. Содержимое ядра называется нуклеоплазма.

Хроматин – основное вещество нуклеоплазмы. Состав хроматина разнообразен: здесь находятся в первую очередь нуклеиновые кислоты (ДНК и РНК), а также белки и многие ионы металлов. ДНК в нуклеоплазме расположена упорядочено в виде хромосом. Именно хромосомы при делении удваиваются, после чего каждый их наборов переходит в дочерние клетки.

РНК в нуклеоплазме чаще всего встречается двух типов: мРНК и рРНК. Матричная РНК образуется в процессе транскрипции – считывания информации с ДНК. Молекула такой рибонуклеиновой кислоты позже покидает ядро и в дальнейшем служит матрицей для образования новых белков.

Рибосомальная РНК образуется в специальных структурах под названием ядрышки. Ядрышко построено из концевых участков хромосом, образованных вторичными перетяжками. Эта структура может быть видна в световой микроскоп в виде уплотненного пятнышка на ядре. Рибосомальные РНК, которые синтезируются здесь, также поступают в цитоплазму и далее вместе с белками образуют рибосомы.

Непосредственное влияние на функции оказывает состав ядра. Биология как наука изучает свойства хроматина для лучшего пониманию процессов транскрипции и деления клетки.

Первой и самой важной функцией ядра является хранение и передача наследственной информации. Ядро – уникальная структура клетки, т. к. в нем содержится большая часть генов человека. Кариотип может быть гаплоидный, диплоидный, триплоидный и так далее. Плоидность яда зависит от функции самой клетки: гаметы гаплоидные, а соматические клетки диплоидные. Клетки эндосперма покрытосеменных растений триплоидные, и, наконец, многие сорта посевных культур имеют полиплоидный набор хромосом.

Передача наследственной информации в цитоплазму из ядра происходит при образовании мРНК. В процессе транскрипции нужные гены кариотипа считываются, и в итоге синтезируются молекулы матричной или информационной РНК.

Также наследственность проявляется при делении клетки митозом, мейозом или амитозом. В каждом из случаев ядро выполняет свою определенную функцию. Например, в профазе митоза разрушается оболочка ядра и сильно компактизированные хромосомы попадают в цитоплазму. Однако в мейозе перед разрушением мембраны в ядре происходит кроссинговер хромосом. А в амитозе ядро вовсе разрушается и вносит небольшой вклад в процессе деления.

Кроме того, ядро косвенно участвует в транспорте веществ из клетки из-за непосредственной связи мембраны с ЭПС. Вот что такое ядро в биологии.

Форма ядер

Ядро, его строение и функции могут зависеть от формы мембраны. Ядерный аппарат может быть округлым, вытянутым, в виде лопастей и т. д. Часто форма ядра специфична для отдельных тканей и клеток. Одноклеточные организмы различаются по типу питания, жизненного цикла, а вместе с тем различаются и формы мембраны ядер.

Разнообразие в форме и размере ядра можно проследить на примере лейкоцитов.

  • Ядро нейтрофилов может быть сегментированным и не сегментированным. В первом случае говорят о подковообразном ядре, и такая форма характерна для молодых клеток. Сегментированное ядро – это результат образования нескольких перегородок в мембране, в результате чего образуется несколько частей, связанных между собой.
  • У эозинофилов ядро имеет характерную гантелевидную форму. В этом случае ядерный аппарат состоит из двух сегментов, связанных перегородкой.
  • Почти весь объем лимфоцитов занят огромным ядром. Лишь небольшая часть цитоплазмы остается по периферии клетки.
  • В железистых клетках насекомых ядро может иметь разветвленное строение.

Количество ядер в одной клетке может быть разным

Не всегда в клетке организма присутствует только одно ядро. Порой необходимо присутствие двух или более ядерных аппаратов для осуществления нескольких функций одновременно. И наоборот, некоторые клетки могут вовсе обходиться без ядра. Вот некоторые примеры необычных клеток, в которых ядер больше одного или оно вообще отсутствует.

1. Эритроциты и тромбоциты. Эти форменные элементы крови транспортируют гемоглобин и фибриноген соответственно. Чтобы одна клетка смогла вместить максимальное количество вещества, она утратила свое ядро. Характерна такая особенность не для всех представителей животного мира: у лягушек в крови находятся огромные по размерам эритроциты с ярко выраженным ядром. Это показывает примитивность данного класса в сравнении с более развитыми таксонами.

2. Гепатоциты печени. Эти клетки содержат в себе два ядра. Одно из них регулирует очистку крови от токсинов, а другое отвечает за образование гемма, который в последующем войдет в состав гемоглобина крови.

3. Миоциты поперечно-полосатой скелетной ткани. Мышечные клетки многоядерные. Это связано с тем, что в них активно проходит синтез и распад АТФ, а также сборка белков.

Особенности ядерного аппарата у простейших

Для примера рассмотрим два вида простейших: инфузории и амебы.

1. Инфузория-туфелька. Этот представитель одноклеточных организмов имеет два ядра: вегетативное и генеративное. Т. к. они отличаются как по функциям, так и по размерам, такая особенность получила название ядерного дуализма.

Вегетативное ядро отвечает за повседневную жизнедеятельность клетки. Оно регулирует процессы ее метаболизма. Генеративное ядро участвует в клеточном делении и в конъюгации – половом процессе, при котором происходит обмен генетической информацией с особями того же вида.

2. Амебы. Яркие представители - дизентерийная и кишечная амебы. Первая относится к агрессивным паразитам человека, а вторая – обычный симбионт, который живет в кишечнике и не причиняет никакого вреда. Т. к. дизентерийная амеба паразитирует тоже в кишечнике, важно отличать эти два вида между собой. Для этого используют особенность ядерного аппарата: у дизентерийной амебы может быть до 4 ядер, а у кишечной амебы от 0 до 8.

Заболевания

Многие генетические заболевания связаны с нарушениями в наборе хромосом. Вот список наиболее известных отклонений в генетическом аппарате ядра:

  • синдром Дауна;
  • сиддром Патау;
  • синдром Эдвардса;
  • синдром Клайнфелтера;
  • синдром Шерешевского-Тернера.

Список можно продолжать, и каждая из болезней отличается порядковым номером пары хромосом. Также подобные заболевания часто затрагивают половые X и Y хромосомы.

Заключение

Ядро играет важную роль в процессе жизнедеятельности клетки. Оно регулирует биохимические процессы, является хранилищем наследственной информации. Транспорт веществ из клетки, синтез белков также связаны с функционированием этой центральной структуры клетки. Вот что такое ядро в биологии.

fb.ru

ЯДРО (в биологии) - это... Что такое ЯДРО (в биологии)?

  • ЯДРО — • ЯДРО, в биологии, ограниченная мембраной часть большинства КЛЕТОК. Содержит ХРОМОСОМЫ. Т. к. ядро содержит генетический материал, оно является необходимым для поддержания клеточных процессов. В ядре производятся РНК, которые используются для… …   Научно-технический энциклопедический словарь

  • ЯДРО — в биологии обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Типичное ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму. Размеры от 1 мкм (у некоторых простейших) до 1 мм… …   Большой Энциклопедический словарь

  • Ядро (значения) — Ядро  нечто центральное и самое важное, часто круглое. Это слово имеет различные значения в разных областях: Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле 4 Спорт …   Википедия

  • ЯДРО — (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… …   Биологический энциклопедический словарь

  • ядро и периферия —         ЯДРО И ПЕРИФЕРИЯ пара взаимосвязанных понятий, вводимая для понимания сути классификаций. Ядро множества основная масса его элементов, компактная в пространстве признаков, а его периферия совокупность разрозненных элементов, проявляющих… …   Энциклопедия эпистемологии и философии науки

  • Ядро — I ср. 1. Внутренняя часть плода (обычно ореха), заключенная в твёрдую оболочку. 2. Внутренняя, центральная часть чего либо. 3. перен. Главная часть какого либо коллектива, определяющая и организующая его деятельность. 4. перен. Сущность, основа… …   Современный толковый словарь русского языка Ефремовой

  • Ядро — I ср. 1. Внутренняя часть плода (обычно ореха), заключенная в твёрдую оболочку. 2. Внутренняя, центральная часть чего либо. 3. перен. Главная часть какого либо коллектива, определяющая и организующая его деятельность. 4. перен. Сущность, основа… …   Современный толковый словарь русского языка Ефремовой

  • Ядро — Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле …   Википедия

  • Ядро (биол.) — Клетки ДНК которых окрашена голубым красителем Хойста. Центральная и правая клетки находятся в интерфазе, поэтому окрашено всё ядро. Клетка слева находится в состоянии митоза (анафаза), поэтому её ядро не видно, а ДНК сконденсирована так, что… …   Википедия

  • Ядро (клетки) — Клетки ДНК которых окрашена голубым красителем Хойста. Центральная и правая клетки находятся в интерфазе, поэтому окрашено всё ядро. Клетка слева находится в состоянии митоза (анафаза), поэтому её ядро не видно, а ДНК сконденсирована так, что… …   Википедия

dic.academic.ru

Клеточное ядро - это... Что такое Клеточное ядро?

Клетки HeLa, ДНК которых окрашена голубым красителем Хёхста 33258. Центральная и правая клетки находятся в интерфазе, поэтому окрашено всё ядро. Клетка слева находится в состоянии митоза (анафаза), поэтому её ядро не видно, а ДНК сконденсирована так, что видны хромосомы

Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

Схема строения клеточного ядра.

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы - структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: h3A, h3B, h4 и h5. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон h2, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с h2 называется хроматосомой.

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма)

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

Ядрышко

Основная статья: Ядрышко

Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Ядерный матрикс

Основная статья: Ядерный скелет

Ядерным матриксом некоторые исследователи называют нерастворимый внутриядерный каркас. Считается, что матрикс построен преимущественно из негистоновых белков, формирующих сложную разветвленную сеть, сообщающуюся с ядерной ламиной. Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. В геноме клетки имеются специальные незначащие А-Т-богатые участки прикрепления к ядерному матриксу (англ. S/MAR — Matrix/Scaffold Attachment Regions), служащие, как предполагается, для заякоривания петель хроматина на белках ядерного матрикса. Впрочем, не все исследователи признают существование ядерного матрикса.

Принципиальная схема реализации генетической информации у про- и эукариот. ПРОКАРИОТЫ. У прокариот синтез белка рибосомой (трансляция) пространственно не отделен от транскрипции и может происходить ещё до завершения синтеза мРНК РНК-полимеразой. Прокариотические мРНК часто полицистронные, то есть содержат несколько независимых генов. ЭУКАРИОТЫ. мРНК эукариот синтезируется в виде предшественника, пре-мРНК, претерпевающего затем сложное стадийное созревание — процессинг, включающий присоединение кэп-структуры к 5'-концу молекулы, присоединение нескольких десятков остатков аденина к ее 3'-концу (полиаденилирование), выщепление незначащих участков — интронов и соединение друг с другом значащих участков — экзонов (сплайсинг). При этом соединение экзонов одной и той же пре-мРНК может проходить разными способами, приводя к образованию разных зрелых мРНК, и в конечном итоге разных вариантов белка (альтернативный сплайсинг). Только мРНК, успешно прошедшая процессинг, экспортируется из ядра в цитоплазму и вовлекается в трансляцию.

Эволюционное значение клеточного ядра

Основное функциональное отличие клеток эукариот от клеток прокариот заключается в пространственном разграничении процессов транскрипции (синтеза матричной РНК) и трансляции (синтеза белка рибосомой), что дает в распоряжение эукариотической клетки новые инструменты регуляции биосинтеза и контроля качества мРНК.

В то время, как у прокариот мРНК начинает транслироваться еще до завершения ее синтеза РНК-полимеразой, мРНК эукариот претерпевает значительные модификации (так называемый процессинг), после чего экспортируется через ядерные поры в цитоплазму, и только после этого может вступить в трансляцию. Процессинг мРНК включает несколько элементов.

Из предшественника мРНК (пре-мРНК) в ходе процесса, называемого сплайсингом вырезаются интроны — незначащие участки, а значащие участки — экзоны соединяются друг с другом. Причем экзоны одной и той же пре-мРНК могут быть соединены несколькими разными способами (альтернативный сплайсинг), так что один предшественник может превращаться в зрелые мРНК нескольких разных видов. Таким образом, один ген может кодировать сразу несколько белков.

Кроме того, интрон-экзонная структура генома, практически невозможная у прокариот (так как рибосомы смогут транслировать незрелые мРНК), дает эукариотам определенную эволюционную мобильность. Учитывая протяженность интронных участков, рекомбинация между двумя генами зачастую сводится к обмену экзонами. Благодаря тому, что экзоны часто соответствуют функциональным доменам белка, участки получившегося в результате рекомбинации «гибрида», зачастую сохраняют свои функции. В то же время у прокариот рекомбинация между генами невозможна без разрыва в значащей части, что безусловно уменьшает шансы на то, что получившийся белок будет функционален.

Модификациям подвергаются концы молекулы мРНК. К 5' -концу молекулы прикрепляется 7-метилгуанин (так называемый кэп). К 3'-концу нематрично присоединяются несколько десятков остатков аденина (полиаденирование).

Процессинг мРНК тесно сопряжен с синтезом этих молекул и необходим для контроля качества. Непроцессированная или не полностью процессированная мРНК не сможет выйти из ядра в цитоплазму или будет нестабильна и быстро деградирует. У прокариот нет таких механизмов контроля качества, и из-за этого прокариотические мРНК имеют меньший срок жизни — нельзя допустить, чтобы неправильно синтезированная молекула мРНК, если такая появится, транслировалась в течение долгого времени.

Происхождение ядра

Клеточное ядро является важнейшей чертой эукариотических организмов, отличающей их от прокариот и архей. Несмотря на значительный прогресс в цитологии и молекулярной биологии, происхождение ядра не выяснено и является предметом научных споров. Выдвинуто 4 основных гипотезы происхождения клеточного ядра, но ни одна из них не получила широкой поддержки.[1]

Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в результате симбиотических взаимоотношений между археей и бактерией (ни археи, ни бактерии не имеют оформленных клеточных ядер). По этой гипотезе, симбиоз возник, когда древняя архея (сходная с современными метаногенными археями), проникла в бактерию (сходную с современными Миксобактериями). Впоследствии архея редуцировалась до клеточного ядра современных эукариот. Эта гипотеза аналогична практически доказанным теориям происхождения митохондрий и хлоропластов, которые возникли в результате эндосимбиоза прото-эукариот и аэробных бактерий.[2] Доказательством гипотезы является наличие одинаковых генов у эукариот и архей, в частности генов гистонов. Также миксобактерии быстро передвигаются, могут образовывать многоклеточные структуры и имеют киназы и G-белки, близкие к эукариотическим.[3]

Согласно второй гипотезе, прото-эукариотическая клетка эволюционировала из бактерии без стадии эндосимбиоза. Доказательством модели является существование современных бактерий из отряда Planctomycetes, которые имеют ядерные структуры с примитивными порами и другие клеточные компартменты, ограниченные мембранами (ничего похожего у других прокариот не обнаружено).[4]

Согласно гипотезе вирусного эукариогенеза, окруженное мембраной ядро, как и другие эукариотические элементы, произошли вследствие инфекции прокариотической клетки вирусом. Это предположение основывается на наличии общих черт у эукариот и некоторых вирусов, а именно геноме из линейных цепей ДНК, кэпировании мРНК и тесном связывании генома с белками (гистоны эукариот принимаются аналогами вирусных ДНК-связывающих белков). По одной версии, ядро возникло при фагоцитировании (поглощении) клеткой большого ДНК-содержащего вируса.[5] По другой версии, эукариоты произошли от древних архей, инфицированных поксвирусами. Это гипотеза основана на сходстве ДНК-полимеразы современных поксвирусов и эукариот.[6][7] Также предполагается, что нерешенный вопрос о происхождении пола и полового размножения может быть связан с вирусным эукариогенезом.[8]

Наиболее новая гипотеза, названная экзомембранной гипотезой, утверждает, что ядро произошло от одиночной клетки, которая в процессе эволюции выработала вторую внешнюю клеточную мембрану; первичная клеточная мембрана после этого превратилась в ядерную мембрану, и в ней образовалась сложная система поровых структур (ядерных пор) для транспорта клеточных компонентов, синтезированных внутри ядра.[9]

Примечания

Molecular Biology Of The Cell, 4е издание, 2002 г. — учебник по молекулярной биологии на английском языке

dic.academic.ru

ЯДРО - это... Что такое ЯДРО?

  • Ядро — атомное ядро положительно заряженная массивная центральная часть атома, состоящая из протонов и нейтронов (нуклонов). дочернее ядро ядро, образующееся в результате распада материнского ядра. материнское ядро атомное ядро, испытывающее… …   Термины атомной энергетики

  • ядро — сущ., с., употр. сравн. часто Морфология: (нет) чего? ядра, чему? ядру, (вижу) что? ядро, чем? ядром, о чём? о ядре; мн. что? ядра, (нет) чего? ядер, чему? ядрам, (вижу) что? ядра, чем? ядрами, о чём? о ядрах 1. Ядром называют внутреннюю,… …   Толковый словарь Дмитриева

  • ЯДРО — ЯДРО, ядра, мн. ядра, ядер, ядрам, ср. 1. Внутренняя часть плода в твердой оболочке. Ядро ореха. 2. только ед. Внутренняя, средняя, центральная часть чего нибудь (спец.). Ядро древесины. Ядро земли (геол.). Ядро семяпочки (бот.). Ядро кометы… …   Толковый словарь Ушакова

  • ЯДРО — ср. ядрышко, ядрище, недро, самая середка, внутри вещи, нутро ее или серединная глубь; сосредоточенная суть, сущность, основанье; твердое, крепкое, или самое главное, важное, сущное; | круглое тело, шар. Из сих двух значений выводятся прочие: Сын …   Толковый словарь Даля

  • ЯДРО — (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… …   Биологический энциклопедический словарь

  • ядро — ЯДРО1, а, мн ядра, ядер, ядрам. Внутренняя часть плода, заключенная в твердую оболочку. Ядро грецкого ореха внешне очень похоже на головной мозг млекопитающего. ЯДРО2, а, мн ядра, ядер,ср Внутренняя центральная часть предмета (состоящего из… …   Толковый словарь русских существительных

  • ядро — См …   Словарь синонимов

  • ядро — а; мн. ядра, ядер, ядрам; ср. 1. Внутренняя часть плода (обычно ореха), заключённая в твёрдую оболочку. * А орешки не простые: Всё скорлупки золотые, Ядра чистый изумруд (Пушкин). Не разгрызть ореха, не съесть и ядра (Посл.). 2. Внутренняя,… …   Энциклопедический словарь

  • ЯДРО — (биологическое), обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. От окружающей цитоплазмы ядро отделено оболочкой. Размеры от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). В ядре… …   Современная энциклопедия

  • ЯДРО — в биологии обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Типичное ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму. Размеры от 1 мкм (у некоторых простейших) до 1 мм… …   Большой Энциклопедический словарь

dic.academic.ru

Ядро – это в биологии: что такое ядерная оболочка, какую функцию выполняет, как происходит деление и из чего состоит

Биология клеток живых организмов изучает прокариотов, не имеющих ядра (nucleus, core). Для каких организмов характерно наличие ядра? Нуклеус — это центральный органоид эукариотов….

Важно! Основной функцией клеточного ядра является хранение и передача наследственной информации.

Структура

Что такое ядро? Из каких частей состоит ядро? Нижеперечисленные компоненты входят в состав нуклеуса:

  • Ядерная оболочка,
  • Нуклеоплазма,
  • Кариоматрикс,
  • Хроматин,
  • Нуклеолы.

Компоненты ядра

Ядерная оболочка

Кариолемма состоит из двух прослоек — наружной и внутренней, разделенных перинуклеарной полостью. Внешняя мембрана сообщается с шероховатыми эндоплазматическими канальцами. Ко внутренней оболочке прикрепляются фибриллярные протеины основы ядерного вещества. Между мембранами находится перинуклеарная полость, сформированная взаимным отталкиванием ионизированных органических молекул с аналогичными зарядами.

Кариолемма пронизана системой отверстий — пор, образованных белковыми молекулами. Через них рибосомы— структуры, в которых происходит синтез протеинов, а также оповестительные РНК проникают в цитоплазматическую сеть.

Межмембранные поры являются канальцами, заполненными водой. Их стенки сформированы специфическими белками — нуклеопоринами. Диаметр отверстия позволяет цитоплазме и содержимому ядра обмениваться мелкими молекулами. Нуклеиновые кислоты, а также высокомолекулярные белки не способны самостоятельно перетекать из одной части клетки в другую. Для этого существуют специальные транспортные протеины, активизация которых протекает с энергетическими затратами.

Высокомолекулярные соединения перемещаются через поры при помощи кариоферинов. Те, что транспортируют вещества из цитоплазмы в ядро, называются импортинами. Передвижение в обратном направлении осуществляют экспортины. В какой части ядра находится молекула РНК? Она путешествует по всей клетке.

Важно! Высокомолекулярные вещества не могут самостоятельно проникать через поры из ядра в клетку и обратно.

 Нуклеоплазма

Представлена кариоплазмой — гелеобразной массой, находящейся внутри двухслойной оболочки. В отличие от цитоплазмы, где ph >,7, внутри ядра среда кислая. Основными веществами, которые входят в состав нуклеоплазмы являются нуклеотиды, белки, катионы, РНК, ДНК, h3O.

Кариоматрикс

Какие компоненты входят в основу ядра? Она сформирована фибриллярными белками трехмерной структуры — ламинами. Играет роль скелета, препятствуя деформации органоида при механических воздействиях.

Хроматин

Это главное вещество, представленное совокупностью хромосом, часть из которых находится в активированном состоянии. Остальные упакованы в уплотненные глыбки. Их раскрытие происходит во время деления. В какой части ядра находится молекула, известная нам, как ДНК? Хромосомы состоят из генов, представляющих собой части молекулы ДНК. В них закреплена информация, передающая новым генерациям клеток наследственные признаки. Следовательно, в этой части ядра находится молекула ДНК.

В биологии выделяют следующие типы хроматина:

  • Эухроматин. Представляется нитевидными, деспирализированными, неокрашиваемыми образованиями. Существует в покоящемся ядре в период интерфазы между циклами деления клетки.
  • Гетерохроматин. Не активизированные спирализованные, легко окрашивающиеся участки хромосом.

Нуклеолы

Ядрышко — наиболее уплотненная структура из входящих в состав нуклеуса. Оно обладает, преимущественно округлыми формами, однако, имеются сегментированные, как у лейкоцитов. Ядро клетки некоторых организмов нуклеол не имеют. В других нуклеусах их может быть несколько. Вещество ядрышек представлено гранулами, являющимися субъединицами рибосом, а также фибриллами, представляющими собой молекулы РНК.

Ядрышко: строение и функции

Нуклеолы представлены нижеперечисленными структурными типами:

  • Ретикулярный. Типичный для большинства клеток. Отличается высокой концентрацией уплотненных фибрилл и гранул.
  • Компактный. Характеризуется множественностью фибриллярных скоплений. Встречается в делящихся клетках.
  • Кольцеобразный. Характерен для лимфоцитов и соединительнотканных целл.
  • Остаточный. Преобладает в клетках, где процесс деления не происходит.
  • Обособленный. Все составляющие нуклеолы разделены, пластические действия невозможны.

Функции

Какую функцию выполняет ядро? Нуклеусу характерны следующие обязанности:

  • Хранение генетической информации,
  • Передача наследственных признаков,
  • Размножение,
  • Запрограммированная гибель.

Хранение генетической информации

Генетические коды хранятся в хромосомах. Они отличаются формой и размерами. Особи разного вида имеют неодинаковое количество хромосом. Комплекс признаков, характерный для хранилищ наследственной информации данного вида называют кариотипом.

Важно! Кариотип — это комплекс признаков, характерный для хромосомного состава организмов данного вида.

Различают гаплоидную, диплоидную, полиплоидную совокупность хромосом.

Клетки тела человека содержат 23 разновидности хромосом. В яйцеклетке и спермии содержится гаплоидный, то есть, одинарный их набор. При оплодотворении хранилища обоих клеток объединяются, образуя двойной — диплоидный комплект. Клеткам культурных растений присущ триплоидный или тетраплоидный кариотип.

Хранение генетической информации

Передача наследственных признаков

Какие процессы жизнедеятельности происходят в ядре? Генная кодировка передается в процессе считывания информации, результатом которой является образование матричной (информационной) РНК. Экспортины выводят рибонуклеиновую кислоту через нуклеарные поры в цитоплазму. Рибосомы используют генетические коды для синтеза необходимых организму белков.

Важно! Синтез белков происходит в цитоплазматических рибосомах на основании закодированной генетической информации, доставленной информационной РНК.

Размножение

Прокариоты размножаются просто. Бактерии обладают единственной молекулой ДНК. В процессе деления она копирует саму себя, прикрепляясь ко клеточной оболочке. Мембрана врастает между двумя соединениями и образуются два новых организма.

У эукариотов различают амитоз, митоз и мейоз:

  • Амитоз. Деление ядра происходит без дробления клетки. Образуются двухъядерные целлы. При следующем делении возможно возникновение полинуклеарных образований. Для каких организмов характерно такое размножение? Ему подвержены стареющие, нежизнеспособные, а также опухолевые клетки. В некоторых ситуациях амитотическое деление с образованием нормальных клеток происходит в роговице, печени, хрящевых текстурах, а также тканях некоторых растений.
  • Митоз. В этом случае деление ядра начинается его разрушением. Образуется веретено дробления, при помощи которого парные хромосомы разводятся по разным концам клетки. Происходит репликация носителей наследственности, после чего формируются два ядра. После этого веретено деления демонтируется, формируется ядерная оболочка, которая разделяет одну клетку на две.
  • Мейоз. Сложный процесс, при котором деление ядра происходит без удвоения разошедшихся хромосом. Характерен для образования половых клеток — гамет, имеющих гаплоидный набор носителей наследственности.

Митоз

Запрограммированная гибель

Генетическая информация предусматривает продолжительность жизни клетки, и по истечении отведенного времени запускает процесс апоптоза (греч. — листопад). Хроматин конденсируется, ядерная мембрана разрушается. Целла распадается на фрагменты, ограничивающиеся плазматической оболочкой. Апоптотические тельца, минуя стадию воспаления, поглощаются макрофагами, либо соседними клетками.

Для наглядности строение ядра и функции, выполняемые его частями представлены таблицей

Элемент ядра Особенности строения Выполняемые функции
Оболочка Двухслойная мембрана Разграничение содержимого нуклеуса и цитоплазмы
Поры Отверстия в оболочке Экспорт — импорт РНК
Нуклеоплазма Гелеобразная консистенция Среда для биохимических превращений
Кариоматрикс Фибриллярные белки Поддержка структуры, защита от деформирования
Хроматин Эухроматин, гетерохроматин Хранение генетической информации
Нуклеола Фибриллы и гранулы Выработка рибосом

Внешний вид

Форма определяется конфигурацией мембраны. Отмечают нижеперечисленные виды ядер:

  • Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус.
  • Вытянутая. Подковообразное nucleus находят у несозревшего нейтрофила.
  • Сегментированная. В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила.
  • Разветвленная. Обнаруживается в ядрах клеток членистоногих.

Количество ядер

В зависимости от выполняемых функций, целлы могут обладать одним или несколькими ядрами либо не иметь их вообще. Различают следующие виды клеток:

  • Безъядерные. Форменные компоненты крови высших животных — эритроциты, тромбоциты являются переносчиками важных веществ. Чтобы освободить место для гемоглобина или фибриногена костный мозг вырабатывает эти элементы безъядерными. Они не способны делиться и по прохождении запрограммированного времени отмирают.
  • Одноядерные. Таково большинство клеток живых организмов.
  • Бинуклеарные. Печёночные гепатоциты выполняют двойную функцию — детоксикационную и производственную. Синтезируется гем, необходимый для выработки гемоглобина. Для этих целей необходимы два ядра.
  • Многоядерные. Миоциты мышц выполняют колоссальный объем работы, для ее выполнения необходимы дополнительные ядра. По этой же причине полинуклеарностью отличаются клетки покрытосеменных растений.

Хромосомные патологии

Многие болезни являются следствием нарушения связаны с нарушениями хромосомного состава. Наиболее известны нижеперечисленные симптомокомплексы:

  • Дауна. Вызван наличием лишней двадцать первой хромосомой (трисомия).
  • Эдвардса. Присутствует лишняя восемнадцатая хромосома.
  • Патау. Трисомия 13.
  • Тернера. Не достает хромосомы Х.
  • Клайнфелтера. Характеризуется лишними X либо Y-хромосомами.

Недуги, вызванные разладом в функционировании составных частей ядра не всегда связаны с хромосомными аномалиями. Мутации, которые влияют на отдельные белки ядра вызывают следующие заболевания:

  • Ламинопатия. Проявляется преждевременным старением.
  • Аутоиммунные заболевания. Красная волчанка — диффузное поражение соединительнотканных текстур, рассеянный склероз — разрушение миелиновых оболочек нервов.

Важно! Хромосомные аномалии приводят к тяжелым заболеваниям.

Строение ядра

Биология в картинках: Строение и функции ядра

Вывод

Клеточное ядро отличается сложным строением и выполняет жизненно важные функции.Оно является хранилищем и передатчиком наследственной информации, руководит синтезом белков и процессами деления клеток. Хромосомные аномалии являются причинами тяжелых заболеваний.

tvercult.ru


Смотрите также