3 д печать


3D-печать для "чайников" или "что такое 3D-принтер?"

Термин 3D-печать имеет несколько синонимов, один из которых достаточно кратко и точно характеризует сущность процесса – «аддитивное производство», то есть производство за счет добавления материала. Термин был придуман не случайно, ибо в этом и состоит основное отличие множественных технологий 3D-печати от привычных методов промышленного производства, получивших в свою очередь название «субтрактивных технологий», то есть «отнимающих». Если при фрезеровке, шлифовке, резке и прочих схожих процедурах лишний материал удаляется с заготовки, то в случае с аддитивным производством материал постепенно добавляется до получения цельной модели.

В скором времени 3D-печать будет опробована даже на Международной космической станции

Строго говоря, многие традиционные методы можно было бы отнести к «аддитивным» в широком смысле этого слова – например, литье или клепку. Однако стоит иметь в виду, что в этих случаях либо требуется расход материалов на изготовление специфических инструментов, занятых в производстве конкретных деталей (как в случае с литьем), либо весь процесс сводится к соединению уже готовых деталей (сварке, клепке и пр.). Для того чтобы технология классифицировалась как «3D-печать», необходимо построение конечного продукта из сырья, а не заготовок, а формирование объектов должно быть произвольным – то есть без использования форм. Последнее означает, что аддитивное производство требует программной составляющей. Грубо говоря, аддитивное производство требует управления с помощью компьютеров, чтобы форму конечных изделий можно было определять за счет построения цифровых моделей. Именно этот фактор и задержал широкое распространение 3D-печати до того момента, когда числовое программное управление и 3D-проектирование стали общедоступными и высокопроизводительными. Технологий 3D-печати существует великое множество, названий же для них еще больше ввиду патентных ограничений. Тем не менее, можно попробовать разделить технологии по основным направлениям: Сюда входят такие методы, как послойное наплавление (FDM) и многоструйная печать (MJM). В основе этого метода лежит выдавливание (экструзия) расходного материала с последовательным формированием готового изделия. Как правило, расходные материалы состоят из термопластиков, либо композитных материалов на их основе. Этот подход основывается на соединении порошкового материала в единое целое. Формирование производится разными способами. Наиболее простым является склеивание, как в случае со струйной трехмерной печатью (3DP). Подобные принтеры наносят на рабочую платформу тонкие слои порошка, которые затем выборочно склеиваются связующим материалом. Порошки могут состоять из практически любого материала, который можно измельчить до состояния пудры – пластика, древесины, металла.

Эта модель автомобиля Aston Martin, принадлежавшего Джеймсу Бонду, была успешно напечатана на SLS-принтере компании Voxeljet и не менее успешно взорвана во время съемок фильма «Координаты Скайфолл» вместо дорогого оригинала

Наиболее популярными же в данной категории стали технологии лазерного спекания (SLS и DMLS) и плавки (SLM), позволяющие создавать цельнометаллические детали. Как и в случае со струйной трехмерной печатью, эти устройства наносят тонкие слои порошка, но материал не склеивается, а спекается или плавится с помощью лазера. Лазерное спекание (SLS) применяется для работы как с пластиковыми, так и с металлическими порошками, хотя металлические гранулы обычно имеют более легкоплавкую оболочку, а после печати дополнительно спекаются в специальных печах. DMLS – вариант SLS установок с более мощными лазерами, позволяющими спекать непосредственно металлические порошки без добавок. SLM-принтеры предусматривают уже не просто спекание частиц, а их полную плавку, что позволяет создавать монолитные модели, не страдающие от относительной хрупкости, вызываемой пористостью структуры. Как правило, принтеры для работы с металлическими порошками оснащаются вакуумными рабочими камерами, либо замещают воздух инертными газами. Подобное усложнение конструкции вызывается необходимостью работы с металлами и сплавами, подверженными оксидации – например, с титаном. Схема работы SLA-принтера Стереолитографические принтеры используют специальные жидкие материалы, называемые «фотополимерными смолами». Термин «фотополимеризация» указывает на способность материала затвердевать под воздействием света. Как правило, такие материалы реагируют на облучение ультрафиолетом. Смола заливается в специальный контейнер с подвижной платформой, которая устанавливается в позиции возле поверхности жидкости. Слой смолы, покрывающий платформу, соответствует одному слою цифровой модели. Затем тонкий слой смолы обрабатывается лазерным лучом, затвердевая в точках соприкосновения. По окончании засветки платформа вместе с готовым слоем погружаются на толщину следующего слоя, и засветка производится вновь. Схема работы 3D-принтеров, использующих технологию ламинирования (LOM) Некоторые 3D-принтеры выстраивают модели, используя листовые материалы – бумагу, фольгу, пластиковую пленку. Слои материала наклеиваются друг на друга и обрезаются по контурам цифровой модели с помощью лазера или лезвия. Такие установки хорошо подходят для макетирования и могут использовать очень дешевые расходные материалы, включая обычную офисную бумагу. Тем не менее, сложность и шумность таких принтеров, вкупе с ограниченными возможностями изготовляемых моделей ограничивают их популярность.

Наиболее популярными методами 3D-печати, применяемыми в быту и в офисных условиях стали моделирование методом послойного наплавления (FDM) и лазерная стереолитография (SLA).

Остановимся на этих технологиях поподробнее. FDM – пожалуй, наиболее простой и доступный метод трехмерного построения, что и обуславливает его высокую популярность. Высокий спрос на FDM-принтеры ведет к быстрому снижению цен на устройства и расходные материалы, наряду с развитием технологии в направлении удобства эксплуатации и повышения надежности. Катушка с нитью из ABS-пластика и готовая модель FDM-принтеры предназначены для печати термопластиками, которые обычно поставляются в виде тонких нитей, намотанных на катушки. Ассортимент «чистых» пластиков весьма широк. Одним из наиболее популярных материалов является полилактид или «PLA-пластик». Этот материал изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик, наоборот, очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании. Из этого материала производятся многие пластиковые предметы, которыми мы пользуемся на повседневной основе: корпуса бытовых устройств, сантехника, пластиковые карты, игрушки и т.д.

Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно и применение более экзотичных материалов – таких, как поливиниловый спирт, известный как «PVA-пластик». Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы. Но об этом чуть ниже.

Модель, изготовленная из Laywoo-D3. Изменение температуры экструзии позволяет добиваться разных оттенков и имитировать годовые кольца

Вовсе необязательно печатать однородными пластиками. Возможно и применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов. Так, Laywoo-D3 состоит отчасти из натуральной древесной пыли, что позволяет печатать «деревянные» изделия, включая мебель. Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы. Стоит лишь помнить, что связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей. Экструдер – печатная головка FDM-принтера. Строго говоря, это не совсем верно, ибо головка состоит из нескольких частей, из которых непосредственно «экструдером» является лишь подающий механизм. Тем не менее, по устоявшейся традиции термин «экструдер» повсеместно применяется в качестве синонима целой печатающей сборки.

Общая схема конструкции FDM-экструдера

Экструдер предназначен для плавки и нанесения термопластиковой нити. Первый компонент – механизм подачи нити, состоящий из валиков и шестерней, приводимых в движение электромотором. Механизм осуществляет подачу нити в специальную нагреваемую металлическую трубку с соплом небольшого диаметра, называемую «хот-энд» или просто «сопло». Тот же механизм используется и для извлечения нити, если необходима смена материала. Хот-энд служит для нагревания и плавления нити, подаваемой протягивающим механизмом. Как правило, сопла производятся из латуни или алюминия, хотя возможно использование более термоустойчивых, но и более дорогих материалов. Для печати наиболее популярными пластиками вполне достаточно и латунного сопла. Собственно «сопло» крепится к концу трубки с помощью резьбового соединения и может быть заменено на новое в случае износа или при необходимости смены диаметра. Диаметр сопла обуславливает толщину расплавленной нити и, как следствие, влияет на разрешение печати. Нагревание хот-энда регулируется термистором. Регулировка температуры очень важна, так при перегреве материала может произойти пиролиз, то есть разложение пластика, что способствует как потере свойств самого материала, так и забиванию сопла.

Экструдер FDM-принтера PrintBox3D One

Для того чтобы нить не расплавилась слишком рано, верхняя часть хот-энда охлаждается с помощью радиаторов и вентиляторов. Этот момент имеет огромное значение, так как термопластики, проходящие порог температуры стеклования, значительно расширяются в объеме и повышают трение материала со стенками хот-энда. Если длина такого участка слишком велика, протягивающему механизму может не хватить сил для проталкивания нити.

Количество экструдеров может варьироваться в зависимости от предназначения 3D-принтера. Простейшие варианты используют одну печатающую головку. Двойной экструдер значительно расширяет возможности устройства, позволяя печатать одну модель двумя разными цветами, а также использовать разные материалы. Последний момент важен при построении сложных моделей с нависающими элементами конструкции: FDM-принтеры не могут печатать «по воздуху», так как наносимым слоям требуется опора. В случае с навесными элементами приходится печатать временные опорные структуры, которые удаляются по завершении печати. Процесс удаления чреват повреждением самой модели и требует аккуратности. Кроме того, если модель имеет сложную структуру с труднодоступными внутренними полостями, построение обычных опор может оказаться непрактичным виду сложности удаления лишнего материала.

Готовая модель с опорами из PVA-пластика (белого цвета) до и после промывки

В таких случаях весьма кстати приходится тот самый водорастворимый поливиниловый спирт (PVA-пластик). С помощью двойного экструдера можно построить модель из водоупорного термопластика, используя PVA для создания опор. После окончания печати PVA можно просто растворить в воде и получить сложное изделие идеального качества. Некоторые модели FDM-принтеров могут использовать три или даже четыре экструдера. Подогреваемая платформа, накрытая съемным стеклянным рабочим столиком Построение моделей происходит на специальной платформе, зачастую оснащаемой нагревательными элементами. Подогрев требуется для работы с целым рядом пластиков, включая популярный ABS, подверженных высокой степени усадки при охлаждении. Быстрая потеря объема холодными слоями в сравнении со свеженанесенным материалом может привести к деформации модели или расслоению. Подогрев платформы позволяет значительно выравнивать градиент температур между верхними и нижними слоями. Для некоторых материалов подогрев противопоказан. Характерный пример – PLA-пластик, который требует достаточно длительного времени для затвердевания. Подогрев PLA может привести к деформации нижних слоев под тяжестью верхних. При работе с PLA обычно принимаются меры не для подогрева, а для охлаждения модели. Такие принтеры имеют характерные открытые корпуса и дополнительные вентиляторы, обдувающие свежие слои модели.

Калибровочный винт рабочей платформы, покрытой синим малярным скотчем

Платформа требует калибровки перед печатью, чтобы сопло не задевало нанесенные слои и не отходило слишком далеко, вызывая печать «по воздуху», что приводит к образованию «вермишели» из пластика. Процесс калибровки может быть как ручным, так и автоматическим. В ручном режиме калибровка производится позиционированием сопла в разных точках платформы и регулировкой наклона платформы с помощью опорных винтов для достижения оптимальной дистанции между поверхностью и соплом. Как правило, платформы оснащаются дополнительным элементом – съемным столиком. Такая конструкция упрощает чистку рабочей поверхности и облегчает снятие готовой модели. Столики производятся из различных материалов, включая алюминий, акрил, стекло и пр. Выбор материала для изготовления столика зависит от наличия подогрева и расходных материалов, под которые оптимизирован принтер. Для лучшего схватывания первого слоя модели с поверхностью столика зачастую применяются дополнительные средства, включая полиимидную пленку, клей и даже лак для волос! Но наиболее популярным средством служит недорогой, но эффективный малярный скотч. Некоторые производители делают перфорированные столики, хорошо удерживающие модель, но сложные в очистке. В целом, целесообразность нанесения дополнительных средств на столик зависит от расходного материала и материала самого столика. Схема работы позиционирующих механизмов Само собой, печатающая головка должна перемещаться относительно рабочей платформы, причем в отличие от обычных офисных принтеров, позиционирование должно производиться не в двух, а в трех плоскостях, включая регулировку по высоте. Схема позиционирования может варьироваться. Самый простой и распространенный вариант подразумевает крепление печатающей головки на перпендикулярных направляющих, приводимых в движение пошаговыми двигателями и обеспечивающими позиционирование по осям X и Y. Вертикальное же позиционирование осуществляется за счет передвижения рабочей платформы. С другой стороны, возможно передвижение экструдера в одной плоскости, а платформы – в двух.

Дельта-принтер ORION производства компании SeemeCNC

Один из вариантов, набирающих популярность, является использование дельтаобразной системы координат. Подобные устройства в промышленности называют «дельта-роботами». В дельта-принтерах печатная головка подвешивается на трех манипуляторах, каждый из которых передвигается по вертикальной направляющей. Синхронное симметричное движение манипуляторов позволяет изменять высоту экструдера над платформой, а ассиметричное движение вызывает смещение головки в горизонтальной плоскости. Вариантом такой системы является обратный дельтовидный дизайн, где экструдер крепится неподвижно к потолку рабочей камеры, а платформа передвигается на трех опорных манипуляторах. Дельта-принтеры имеют цилиндрическую область построения, а их конструкция облегчает увеличение высоты рабочей зоны с минимальными изменениями дизайна за счет удлинения направляющих. В итоге все зависит от решения конструкторов, но основополагающий принцип не меняется. Типичный контроллер на основе Arduino, оснащенный дополнительными модулями Управление работой FDM-принтера, включая регулировку температуры сопла и платформы, темпа подачи нити и работы пошаговых моторов, обеспечивающих позиционирование экструдера, выполняется достаточно простыми электронными контроллерами. Большинство контроллеров основываются на платформе Arduino, имеющей открытую архитектуру. Программный язык, используемый принтерами, называется G-код (G-Code) и состоит из перечня команд, поочередно выполняемых системами 3D-принтера. G-код компилируется программами, называемыми «слайсерами» – стандартным программным обеспечением 3D-принтеров, сочетающим некоторые функции графических редакторов с возможностью установки параметров печати через графический интерфейс. Выбор слайсера зависит от модели принтера. Принтеры RepRap используют слайсеры с открытым исходным кодом – такие, как Skeinforge, Replicator G и Repetier-Host. Некоторые компании создают принтеры, требующие использование фирменного программного обеспечения.

Программный код для печати генерируется с помощью слайсеров

В качестве примера можно упомянуть принтеры линейки Cube от компании 3D Systems. Есть и такие компании, которые предлагают фирменное обеспечение, но позволяют использовать и сторонние программы, как в случае с последними поколениями 3D-принтеров компании MakerBot. Слайсеры не предназначены для 3D-проектирования, как такового. Эта задача выполняется с помощью CAD-редакторов и требует определенных навыков трехмерного дизайна. Хотя новичкам не стоит отчаиваться: цифровые модели самых различных дизайнов предлагаются на многих сайтах, зачастую даже бесплатно. Наконец, некоторые компании и частные специалисты предлагают услуги 3D-проектирования для печати на заказ.

И наконец, 3D-принтеры можно использовать вкупе с 3D-сканерами, автоматизирующими процесс оцифровки объектов. Многие их таких устройств создаются специально для работы с 3D-принтерами. Наиболее известные примеры включают ручной сканер 3D Systems Sense и портативный настольный сканер MakerBot Digitizer.

FDM-принтер MakerBot Replicator 5-го поколения, со встроенным контрольным модулем в верхней части рамы

Пользовательский интерфейс 3D-принтера может состоять из банального USB порта для подключения к персональному компьютеру. В таких случаях управление устройством фактически осуществляется посредством слайсера. Недостатком такой упрощенности является достаточно высокая вероятность сбоя печати при зависаниях или притормаживании компьютера. Более продвинутый вариант включает наличие внутренней памяти или интерфейса для карты памяти, что позволяет сделать процесс автономным. Такие модели оснащаются контрольными модулями, позволяющими регулировать многие параметры печати (например, скорость печати или температуру экструзии). В состав модуля может входить небольшой LCD-дисплей или даже мини-планшет. Профессиональный FDM-принтер Stratasys Fortus 360mc, позволяющий печатать нейлоном FDM-принтеры весьма и весьма разнообразны, начиная от простейших самодельных RepRap принтеров и заканчивая промышленными установками, способными печатать крупногабаритные объекты. Лидером по производству промышленных установок является компания Stratasys, основанная автором технологии FDM-печати Скоттом Крампом. Простейшие FDM-принтеры можно построить самому. Такие устройства именуют RepRap, где «Rep» указывает на возможность «репликации», то есть самовоспроизведения. RepRap принтеры могут быть использованы для печати пластиковых деталей, включенных в собственную конструкцию. Контроллер, направляющие, ремни, моторы и прочие компоненты можно легко приобрести по отдельности. Разумеется, сборка подобного устройства своими силами требует серьезных технических и даже инженерных навыков. Некоторые производители облегчают задачу, продавая комплекты для самостоятельной сборки, но подобные конструкторы все равно требуют хорошего понимания технологии.

Вариант популярного RepRap принтера Prusa позднего, третьего поколения

Если же вам по душе мастерить вещи собственными руками, то RepRap принтеры приятно порадуют ценой: средняя стоимость популярного дизайна Prusa Mendel ранних поколений составляет порядка $500 в полной комплектации. И, несмотря на свою «самодельную сущность», RepRap принтеры вполне способны производить модели с качеством на уровне дорогих фирменных собратьев. Обыденные же пользователи, не желающие вникать в тонкости процесса, а требующие лишь удобное устройство для бытовой эксплуатации, могут приобрести FDM-принтер в готовом виде. Многие компании делают упор на развитие именно пользовательского сегмента рынка, предлагая на продажу 3D-принтеры, готовые к печати «прямо из упаковки» и не требующие серьезных навыков в обращении с компьютерами.

Бытовой 3D-принтер Cube производства компании 3D Systems

Самым известным примером бытового 3D-принтера служит 3D Systems Cube. Хотя это устройство и не блещет огромной зоной построения, сверхвысокой скоростью печати или непревзойденным качеством изготовления моделей, оно удобно в использовании, вполне доступно и безопасно: этот принтер получил необходимую сертификацию для использования даже детьми.

Демонстрация работы FDM-принтера производства компании Mankati: http://youtu.be/51rypJIK4y0

Стереолитографические 3D-принтеры широко используются в зубном протезировании Стереолитографические принтеры – вторые по популярности и распространенности после FDM-принтеров. Эти устройства позволяют добиваться исключительно высокого качества печати. Разрешение некоторых SLA-принтеров исчисляется считанными микронами – неудивительно, что эти устройства быстро завоевали любовь ювелиров и стоматологов. Программная сторона лазерной стереолитографии практически идентична FDM-печати, поэтому не будем повторяться и затронем лишь отличительные особенности технологии. Проекторная засветка фотополимерной модели на примере DLP-принтера Kudo3D Titan Стоимость стереолитографических принтеров стремительно снижается, что объясняется растущей конкуренцией ввиду высокого спроса и применением новых технологий, удешевляющих конструкцию. Несмотря на то, что технология обобщенно называется «лазерной» стереолитографией, наиболее современные разработки в большинстве своем применяют ультрафиолетовые светодиодные проекторы.

Проекторы дешевле и надежнее лазеров, не требуют использования деликатных зеркал для отклонения лазерного луча, а также имеют более высокую производительность. Последнее объясняется тем, что контур целого слоя засвечивается целиком, а не последовательно, точка за точкой, как в случае с лазерными вариантами. Этот вариант технологии называется проекторной стереолитографией, «DLP-SLA» или просто «DLP». Тем не менее, на данный момент распространены оба варианта – как лазерные, так и проекторные версии.

Фотополимерная смола заливается в кювету В качестве расходных материалов для стереолитографических принтеров используется фотополимерная смола, внешне напоминающая эпоксидную. Смолы могут иметь самые разные характеристики, но все они обладают одной чертой, краеугольной для применения в 3D-печати: эти материалы затвердевают под воздействием ультрафиолетового света. Отсюда, собственно, и название «фотополимерные».

В полимеризованном виде смолы могут иметь самые разные физические характеристики. Некоторые смолы напоминают резину, другие – твердые пластики вроде ABS. Возможен выбор разных цветов и степени прозрачности. Главный же недостаток смол и SLA-печати в целом – стоимость расходных материалов, значительно превышающая стоимость термопластиков.

С другой стороны, стереолитографические принтеры в основном применяются ювелирами и стоматологами, не требующими построения деталей большого размера, но ценящими экономию от быстрого и точного прототипирования изделий. Таким образом, SLA-принтеры и расходные материалы окупаются очень быстро.

Пример модели, напечатанной на лазерном стереолитографическом 3D-принтере

Смола заливается в кювету, которая может оснащаться опускаемой платформой. В этом случае принтер использует выравнивающее устройство для разглаживания тонкого слоя смолы, покрывающего платформу, непосредственно перед облучением. По мере изготовления модели платформа вместе с готовыми слоями «утапливается» в смоле. По завершении печати модель вынимается из кюветы, обрабатывается специальным раствором для удаления остатков жидкой смолы и помещается в ультрафиолетовую печь, где производится окончательная засветка модели. Некоторые SLA и DLP принтеры работают по «перевернутой» схеме: модель не погружается в расходный материал, а «вытягивается» из него, в то время как лазер или проектор размещаются под кюветой, а не над ней. Такой подход устраняет необходимость выравнивания поверхности после каждой засветки, но требует использования кюветы из прозрачного для ультрафиолетового света материала – например, из кварцевого стекла.

Точность стереолитографических принтеров чрезвычайно высока. Для сравнения, эталоном вертикального разрешения для FDM-принтеров считается 100 микрон, а некоторые варианты SLA-принтеров позволяют наносить слои толщиной всего в 15 микрон. Но и это не предел. Проблема, скорее, не столько в точности лазеров, сколько в скорости процесса: чем выше разрешение, тем ниже скорость печати. Использование цифровых проекторов позволяет значительно ускорить процесс, ибо каждый слой засвечивается целиком. Как результат, производители некоторых DLP-принтеров заявляют о возможности печатать с разрешением в один микрон по вертикали!

Видео с выставки CES 2013, демонстрирующее работу стереолитографического 3D-принтера Formlabs Form1: http://youtu.be/IjaUasw64VE

Настольный стереолитографический принтер Formlabs Form1 Как и в случае с FDM-принтерами, SLA-принтеры поставляются в широком диапазоне с точки зрения габаритов, возможностей и стоимости. Профессиональные установки могут стоить десятки, если не сотни тысяч долларов и весить пару тонн, но быстрое развитие настольных SLA и DLP-принтеров приводит к постепенному снижению стоимости аппаратуры без потери качества печати. Такие модели как Titan 1 обещают сделать стереолитографическую 3D-печать доступной для небольших компаний и даже для бытового использования, имея стоимость в районе $1 000. Form 1 от компании Formlabs уже доступен по отпускной цене производителя в $3 299. Разработчик же DLP принтера Peachy вообще намеревается преодолеть нижний ценовой барьер в $100. При этом стоимость фотополимерных смол остается достаточно высокой, хотя средняя цена за последнюю пару лет упала со $150 до $50 за литр. Само собой, растущий спрос на стереолитографические принтеры будет стимулировать рост производства расходных материалов, что будет вести к дополнительному снижению цен.

Перейти на главную страницу Энциклопедии 3D-печати

3dtoday.ru

Что такое 3D печать и 3D принтер

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый 3D принтер, способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё — от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце — это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей — высокая скорость, простота и относительно небольшая стоимость.

Например, для создания 3D модели или какой-либо детали вручную может понадобиться довольно много времени — от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы — чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге — ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера могут использоваться самые разные материалы. Их физико-механические характеристики могут сильно различаться между собой. Однако ни одному производителю пока не удаётся создать действительно прочный материал. Характеристики смол по прочности сравнимы с эпоксидной смолой.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS — единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология LCD

Ещё недавно, около 2017 года, 3d-принтеры для печати фотополимером были дорогими. Однако изобретение печати на основе проницаемых матриц LCD изменило ситуацию в корне. На середину 2019 года можно приобрести фотополимерный 3d-принтер хорошего качества примерно за 30 000 рублей.

LCD матрица для 3d принтера представляет из себя экран по аналогии с экраном сотового телефона. Сама по себе такая матрица не излучает свет. Она может только изменять степень светопропускания в различных областях. Так формируется картинка слоя печати. А вот источник излучения находится за lcd матрицей. Таким образом для создания подобного 3д-принтера нужно было всего лишь заменить лампу-излучатель на источник ультрафиолетового излучения. Напомним, что подавляющее большинство фотополимеров застывают под действием именно УФ излучения.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области печати металлом. В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала — из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой — скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь — уже не плод воображения писателей — фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

make-3d.ru

Технологии 3D-печати

Принципы, возможности, расходные материалы, цены

В предыдущем обзоре мы уже рассказывали, что технологий 3D-печати очень много, и регулярно появляются либо новые, либо модификации уже известных, поэтому мы не будем пытаться объять необъятное и подробнее расскажем лишь о наиболее интересных и распространенных.

Начнем, конечно, со стереолитографии, которая исторически была самой первой.

Стереолитография (StereoLithography Apparatus, SLA)

Исходным продуктом является жидкий фотополимер, в который добавлен специальный реагент-отвердитель, и эта смесь напоминает всем известную эпоксидную смолу, только в обычном состоянии она остается жидкой, а полимеризуется и становится твердой под воздействием ультрафиолетового лазера.

Естественно, лазер не может сразу создать всю модель в толще полимера, и речь может идти только о последовательном построении тонкими слоями. Поэтому используется подвижная подложка с отверстиями, которая с помощью микролифта-элеватора погружается в фотополимер на толщину одного слоя, затем лазерный луч засвечивает области, подлежащие отверждению, подложка погружается еще на толщину одного слоя, вновь работает лазер, и так далее.

Не обходится и без существенных сложностей. Во-первых, требования к самому фотополимеру достаточно противоречивы: если он будет густым, то его легче полимеризовать, но сложнее обеспечить ровную поверхность после каждого шага погружения; приходится использовать специальную линейку, которая на каждом шаге проходит по поверхности жидкости и выравнивает ее. Большое количество отвердителя при фиксированной мощности лазера позволит уменьшить необходимое время воздействия, однако неизбежная фоновая засветка «портит» окружающий объем полимера и сокращает возможный срок его использования.

Во-вторых, полная полимеризация каждого слоя заняла бы немало времени, поэтому засветка производится до уровня, при котором слой приобретает лишь минимально необходимую прочность, а впоследствии готовую модель, предварительно промыв от остатков жидкого полимера, приходится облучать мощным источником в специальной камере, чтобы полимеризация достигла 100%.

Плюсы технологии понятны:

  • можно получить очень высокое разрешение печати, т. е. достичь хорошей точности при изготовлении моделей, которая по вертикали зависит в основном от возможностей элеватора, погружающего платформу, и обычно составляет 100 мкм, а в лучших аппаратах и меньше, до 25–50 мкм; по горизонтали точность определяется фокусировкой лазерного луча, вполне реальным является диаметр «пятна» в 200 мкм; соответственно и качество поверхности даже без дополнительной обработки получается высоким;
  • можно получать очень большие модели, размером до 150×75×55 см и весом до 150 кг;
  • механическая прочность получаемых образцов достаточно высока, они могут выдерживать температуру до 100 °С;
  • очень мало ограничений на сложность модели и наличие у нее мелких элементов;
  • малое количество отходов;
  • легкость финишной обработки, если таковая вообще потребуется.

Минусы:

  • ограниченный выбор материалов для изготовления моделей;
  • невозможность цветной печати и сочетания разных материалов в одном цикле;
  • малая скорость печати, максимум 10–20 миллиметров в час по вертикали;
  • очень большие габариты и вес: так, один из SLA-аппаратов 3D Systems ProX 950 весит 2,4 тонны при размерах 2,2×1,6×2,26 м.

Хотя мы упомянули ограниченность спектра расходных материалов, но всё же выбор есть, и можно получать модели с разными свойствами: с повышенной термостойкостью, гибкие, с высокой стойкостью к абразивам. Правда, с цветами хуже: доступно очень ограниченное количество, включая белый, серый, а также полупрозрачный.

Но главный минус — высокая цена как самих принтеров (сотни тысяч долларов), так и расходных материалов (две-три тысячи долларов за 10-килограммовый картридж), поэтому сколь-нибудь массово SLA-аппараты не встречаются.

Выборочное лазерное спекание (Selective Laser Sintering, SLS)

Этот метод появился примерно в то же время, что и SLA, и даже имеет с ним много общего, только вместо жидкости используется порошок с диаметром частиц 50–100 мкм, тонкими равномерными слоями распределяемый в горизонтальной плоскости, а потом лазерный луч спекает участки, подлежащие отверждению на данном слое модели.

Исходные материалы могут быть самые разные: металл, пластик, керамика, стекло, литейный воск. Порошок наносится и разравнивается по поверхности рабочего стола специальным валиком, который при обратном проходе удаляет излишки порошка. Затем работает мощный лазер, спекающий частицы друг с другом и с предыдущим слоем, после чего стол опускается на величину, равную высоте одного слоя. Для снижения мощности лазера, необходимой для спекания, порошок в рабочей камере предварительно нагревается почти до температуры плавления, а сам лазер работает в импульсном режиме, поскольку для спекания важнее пиковая мощность, а не длительность воздействия.

Частицы могут расплавляться полностью или частично (по поверхности). Незапеченный порошок, остающийся вокруг отвердевших слоев, служит поддержкой при создании нависающих элементов модели, поэтому нет необходимости в формировании специальных поддерживающих структур. Но этот порошок по окончании процесса необходимо удалить как из камеры, особенно если следующая модель будет создаваться из другого материала, так и из полостей уже изготовленной модели, что можно сделать лишь после ее полного остывания.

Зачастую требуется финишная обработка — например, полировка, поскольку поверхность может получаться шероховатой или с видимой слоистостью. Кроме того, материал может использоваться не только чистый, но и в смеси с полимером или в виде частиц, покрытых полимером, остатки которого нужно удалить путем выжигания в специальной печи. Для металлов одновременно происходит заполнение возникающих пустот бронзой.

Поскольку речь идет о высоких температурах, необходимых для спекания, процесс происходит в азотной среде с малым содержанием кислорода. При работе с металлами это еще и предотвращает окисление.

Серийно выпускаемые установки SLS позволяют работать с достаточно большими объектами, до 55×55×75 см.

Габариты и вес самих установок, как и SLA, достаточно впечатляющие. Так, аппарат Formiga P100, изображенный на фото, при довольно скромных размерах изготавливаемых моделей (рабочая зона 20×25×33 см) имеет размеры 1,32×1,07×2,2 м при весе 600 кг, и это без учета таких опций, как установки для смешивания порошка и системы очистки-фильтрации. Причем работать P100 может только с пластиками (полиамид, полистирол).

Вариантами технологии являются:

  1. Селективное лазерное плавление (Selective Laser Melting, SLM), которое используется для работы с чистыми металлами без примесей полимера и позволяет создать готовый образец за один этап.
  2. Электронно-лучевое плавление (Electron Beam Melting, EBM) с использованием электронного луча вместо лазера; эта технология требует работы в вакуумной камере, но позволяет использовать даже такие металлы, как титан.

Встречаются и такие названия, как Direct Metal Fabrication (DMF), а также Direct Manufacturing.

Принтер SPRO 250 Direct Metal производства 3D Systems, который, как понятно из названия, может работать с металлами по технологии SLM, с рабочей камерой 25×24×32 см имеет размер 1,7×0,8×2 метра и вес 1225 кг. Заявленная скорость от 5 до 20 кубических сантиметров в час, и можно сделать вывод, что модель объемом со стакан будет изготавливаться минимум 10 часов.

Плюсы:

  • широкий спектр материалов, пригодных для использования;
  • позволяет создавать очень сложные модели;
  • скорость в среднем выше, чем у SLA, и может достигать 30–40 мм в час по вертикали;
  • может использоваться не только для создания прототипов, но и для мелкосерийного производства, в т. ч. ювелирных изделий;

Минусы:

  • требуются мощный лазер и герметичная камера, в которой создается среда с малым содержанием кислорода;
  • меньшее, чем у SLA, максимальное разрешение: минимальная толщина слоя 0,1–0,15 мм (в зависимости от материала может быть и немного менее 0,1 мм); по горизонтали, как и в SLA, точность определяется фокусировкой лазерного луча;
  • требуется долгий подготовительный этап для прогрева порошка, а затем нужно ждать остывания полученного образца, чтобы можно было удалить остатки порошка;
  • в большинстве случаев требуется финишная обработка.

Цена на установки SLS еще выше, чем SLA, и может достигать миллионов долларов. Однако отметим, что в феврале 2014 года истек срок патентов на технологию SLS, поэтому вполне можно спрогнозировать увеличение количества компаний, предлагающих подобную технику, а соответственно и заметное снижение цен. Тем не менее, вряд ли в ближайшие годы цены снизятся столь существенно, что SLS-печать станет доступной хотя бы малому бизнесу, не говоря уже о частных энтузиастах.

Поскольку материалы очень разнообразны, мы не приводим ориентировочных цен.

Метод многоструйного моделирования (Multi Jet Modeling, MJM)

Принтеры, основанные на данной технологии, выпускаются компанией 3D Systems. В связи с патентными ограничениями есть и названия, используемые другими производителями принтеров: PolyJet (Photopolymer Jetting, компания Stratasys), DODJet (Drop-On-Demand Jet, компания Solidscape). Конечно, отличия не только в названиях, но базовые принципы похожи.

Процесс очень напоминает обычную струйную печать: материал подается через сопла малого диаметра, расположенные рядами на печатающей головке. Количество сопел может быть от нескольких штук до нескольких сотен. Конечно, материал не является жидким при комнатной температуре: сначала он нагревается до температуры плавления (как правило, не очень высокой), затем подается в головку, наносится послойно и застывает. Слои формируются перемещением головки в горизонтальной плоскости, а вертикальное смещение при переходе к следующему слою, как и в предыдущих случаях, обеспечивается опусканием рабочего стола. В варианте DODJet добавляется этап обработки слоя фрезерной головкой.

В качестве материала для MJM-принтеров используют пластики, фотополимеры, специальный воск, а также материалы для медицинских имплантов, зубных слепков и протезов. Возможна и комбинация разных материалов: в отличие от предыдущих двух технологий, выступающие под большим углом элементы моделей или горизонтальные перемычки во избежание провисаний требуют применения поддерживающих структур, которые при финишной обработке приходится удалять. Чтобы не делать это вручную, можно применить для поддержек материал с меньшей температурой плавления, чем для собственно модели, и потом удалить его расплавлением в специальной печи. Другой вариант — использование для поддержек материала, который удаляется растворением в специализированном растворе, а порой и просто в воде.

Использование фотополимера, как и в стереолитографии, потребует отверждения ультрафиолетом, поэтому напечатанный слой засвечивается УФ-лампой. Воск же затвердевает при естественном охлаждении. Конечно, восковые модели не отличаются особой прочностью, но их очень легко использовать при изготовлении форм для литья.

Как и в обычной струйной печати, использование материалов разного цвета позволит создавать за один цикл многоцветные модели, а смешение базовых цветов даст возможность получать множество оттенков. Кроме этого, можно сочетать в одной модели материалы с разными свойствами — например, твердые и эластичные.

Перейдем к примерам.

Компактный принтер Solidscape 3Z max при собственных размерах 56×50×42 см и весе 34 кг позволяет создавать модели размерами до 152×152×101 мм, обеспечивая разрешение 5000×5000 dpi (197×197 точек/мм) по осям X, Y и 8000 dpi (158 точек/мм) по оси Z. Его цена около $50 000, но в линейке 3Z есть и более дешевые модели.

В этих принтерах как раз и используется воск двух типов: более тугоплавкий (95–115 °С) для собственно моделей и легкоплавкий (50–72 °С) для поддерживающих структур, которые потом удаляются при низких температурах с помощью специального раствора.

Приблизительная стоимость: воск для моделей 3Z LabCast — $260–270 за 360 г, воск для поддержек $200–210 за 230 г. Как видите, к очень уж дешевым такие расходные материалы не отнесешь.

Плюсы:

  • достижимы очень малая толщина слоя (от 16 мкм) и разрешение построения поверхности (до 8000 dpi);
  • возможность многоцветной печати и сочетания материалов с разными свойствами;
  • принтеры могут быть достаточно компактными, особенно в сравнении с предыдущими двумя технологиями.

Минусы:

  • для моделей с нависающими или горизонтально выступающими элементами требуются поддержки, которые приходится тем или иным способом удалять;
  • ограниченный выбор материалов для работы.

Послойное склеивание пленок (Laminated Object Manufacturing, LOM)

Тонкие листы материала раскраиваются лазерным лучом или специальным лезвием, а потом тем или иным способом соединяются между собой. Для создания 3D-моделей может использоваться не только пластик, но даже бумага, керамика или металл.

Поскольку разных моделей очень много, рассмотрим один очень характерный пример — цветной 3D-принтер Mcor IRIS, продемонстрированный компанией Mcor Technologies на выставке SolidWorks World 2013. Он использует в качестве материала самые обычные листы бумаги формата А4 или Letter плотностью 160 г/м², которые окрашиваются в необходимый цвет. Разрешение печати 5760×1440×508 точек на дюйм, а максимальный размер создаваемых объектов составляет 256×169×150 мм. При этом обеспечивается полноцветная печать с передачей более миллиона цветов.

На фото изображен 3D-принтер на подставке; габариты самого принтера 95×70×80 см, вес 160 кг. В подставке размером 116×72×94 см и весом еще 150 кг скрывается цветной 2D-принтер.

Создание модели ведется в несколько этапов: на первом пачка бумаги загружается в 2D-принтер и на каждом из листов в цвете печатается нужный слой.

Затем отпечатанные листы переносятся оператором в 3D-принтер, где специальным лезвием на каждом из них делается прорезь по границе нанесенного изображения, а потом листы склеиваются между собой. На третьем этапе оператор вручную удаляет лишнюю бумагу, не содержащую изображения, что для сложных моделей может занять немало времени.

Как вы уже поняли, в процессе работы получается довольно много отходов: если размер данного сечения модели гораздо меньше А4 или Letter, то остальная часть листа пойдет в корзину; помножьте на количество сечений и представьте, сколько бумаги будет выброшено.

Модели получаются очень впечатляющими и довольно прочными, а их себестоимость кажется копеечной — бумага ведь дешевая!

Но ведь потребуется еще и клей для соединения слоев (около $70 за 600 мл), и картриджи с красителями стандартных цветов CMYK (около $700 за набор из 4 картриджей по 320 мл или $195 за каждый картридж по отдельности), которых, по оценке производителя, хватает в среднем на 48 моделей. Получается не так и дешево, а цена самого аппарата впечатляет еще больше: на Западе упоминаются цены от $47 600, а на российском рынке предложения и вовсе начинаются от двух миллионов рублей.

Есть и естественное ограничение на толщину слоя, равную толщине листа бумаги. Это очень хорошо заметно на следующей модели:

На примере Mcor IRIS перечислим основные достоинства и недостатки, многие из которых присущи и другим принтерам, основанным на технологии LOM.

Плюсы:

  • возможность полноцветной печати с высоким разрешением по осям X и Y;
  • доступность и относительная дешевизна главного расходного материала — бумаги;
  • можно создавать довольно большие модели;
  • для моделей с нависающими или горизонтально выступающими элементами не требуется формирование поддерживающих структур.

Минусы:

  • крайне ограниченный набор материалов для создания моделей (в Mcor IRIS — только бумага), а отсюда и ограничения на прочностные и другие свойства создаваемых образцов;
  • толщина слоя всецело зависит от толщины используемого листового материала, из-за чего модель порой получается грубой, а механическая обработка для сглаживания возможна не всегда, поскольку может привести к расслоению;
  • наличие немалого количества отходов, причем если горизонтальные проекции модели гораздо меньше листа А4/Letter, то отходов получается очень много; избежать этого можно одновременным изготовлением нескольких небольших образцов;
  • всегда требуется финишная обработка, связанная с удалением лишнего материала, она лишь может быть проще или сложнее в зависимости от свойств модели; причем если модель имеет полости с ограниченным доступом, то удалить из них лишнее может быть попросту невозможно.

Раз уж мы упомянули полноцветную печать, которая в технологии LOM хоть и реализуется, но всё же на основе обычной 2D-печати, нельзя не рассказать и о трехмерной печати из гипсового композита.

3D Printing (3DP, 3D-печать)

Как и в SLS, основой для будущего объекта является порошок (гипсовый композит), только он не спекается, а послойно склеивается введением связующего вещества.

Для построения очередного слоя модели по всей площади рабочего стола валиком наносится и разравнивается порошок, в который печатающей головкой, напоминающей струйную, по форме данного сечения модели вводится жидкий клей. Кстати: есть упоминания, что головки разрабатываются Hewlett-Packard. Затем стол с уже созданными слоями опускается и процесс повторяется нужное количество раз, а по окончании происходит нагрев для ускорения высыхания клеящего состава. После этого лишний порошок, оставшийся несвязанным, удаляется: в основном автоматически, возвращаясь в бункер для последующей работы, а из сложнодоступных мест — струей воздуха (станция очистки может быть встроена в дорогие модели) или кистью.

Но в получившейся модели остаются поры — пространство между частичками порошка, а поверхность получается шероховатой. Для придания нужных свойств (гладкости, прочности, малой гигроскопичности) ее нужно обработать специальным составом-закрепителем. В его качестве может выступать раствор английской соли (гептагидрат сульфата магния), воск, парафин, цианокрилаты и эпоксидная смола; часть из них можно наносить простым опрыскиванием или погружением, а для других используются специальные станции.

Откуда же берется полноцветная печать, если порошок один и тот же? А очень просто: красители вводятся в связующее вещество, и их смешение позволяет получить от 64 до 390 000 оттенков. Причем некоторые типы закрепителей позволяют сделать цвета очень яркими.

Такой способ используется в серии ZPrinter, выпускавшейся компанией ZCorporation, которая в 2011 году была поглощена 3D Systems, после чего серия получила название ProJet и несколько иной внешний вид. В серию входят и цветные, и монохромные принтеры с размерами рабочих камер до 508×381×229 мм. Толщину слоя можно задавать ступенями от 0,089 до 0,125 мм, а скорость работы может достигать 2700 см³/час.

Младшая модель серии, принтер ProJet 160 (ZPrinter 150), в России продается по цене свыше 700 тысяч рублей, имеет рабочую камеру 236×185×127 мм, единственно возможную толщину слоя 0,1 мм. Габариты аппарата 740×790×1400 мм при весе 165 кг.

Обеспечиваемое этим аппаратом разрешение составляет 300 dpi по оси X, 450 dpi по Y и 250 dpi (т. е. 0,1 мм) по Z. Печатающая головка имеет 304 сопла, а скорость работы 870 см³/час. Поскольку используется композитный гипсовый материал белого цвета, то и модели получаются белыми; возможности цветной печати нет. Восьмикилограммовое ведро порошка стоит около $1000, а набор 2×1 л прозрачной связующей жидкости $600.

Самый дешевый цветной принтер серии, ProJet 260C (ZPrinter 250), обойдется уже примерно в 1,2–1,3 миллиона рублей. Параметры его примерно те же, что и у ProJet 160, а количество доступных цветов ограничено 64. Цена на младший из полноцветных принтеров, ProJet 460Plus (ZPrinter 450), почти вдвое выше.

Плюсы:

  • позволяет создавать очень сложные модели без поддерживающих структур;
  • возможность полноцветной печати с высоким разрешением.

Минусы:

  • крайне ограниченное количество материалов, пригодных для использования;
  • в ряде случаев требуется финишная обработка, особенно когда нельзя мириться с шероховатой поверхностью;
  • малая прочность получившихся образцов даже после обработки закрепляющим составом.

Теперь переходим к технологии, которая в последнее время стала наиболее распространенной, и рассмотрим ее наиболее подробно, поскольку в последующих обзорах мы будем иметь дело с принтерами на основе именно этой технологии.

Послойное наплавление (Fusing Deposition Modeling, FDM)

Как и во всех остальных рассмотренных нами технологиях, модель при FDM-печати создается послойно. Для изготовления очередного слоя термопластичный материал нагревается в печатающей головке до полужидкого состояния и выдавливается в виде нити через сопло с отверстием малого диаметра, оседая на поверхности рабочего стола (для первого слоя) или на предыдущем слое, соединяясь с ним. Головка перемещается в горизонтальной плоскости и постепенно «рисует» нужный слой — контуры и заполнение между ними, после чего происходит вертикальное перемещение (чаще всего опусканием стола, но есть модели, в которых приподнимается головка) на толщину слоя и процесс повторяется до тех пор, пока модель не будет построена полностью.

В качестве расходного материала чаще всего используются различные пластики, хотя есть и модели, позволяющие работать с другими материалами — оловом, сплавами металлов с невысокой температурой плавления и даже шоколадом.

Минусы, присущие данной методике, очевидны:

  • невысокая скорость работы (но, собственно, очень уж высокой скоростью не могут похвастать и другие технологии: для построения крупных и сложных моделей требуются многие часы и даже десятки часов);
  • небольшая разрешающая способность как по горизонтали, так и по вертикали, что приводит к более или менее заметной слоистости поверхности изготовленной модели;
  • проблемы с фиксацией модели на рабочем столе (первый слой должен прилипнуть к поверхности платформы, но так, чтобы готовую модель можно было снять); их пытаются решить разными способами — подогревом рабочего стола, нанесением на него различных покрытий, однако совсем и всегда избежать не получается;
  • для нависающих элементов требуется создание поддерживающих структур, которые впоследствии приходится удалять, но даже с учетом этого некоторые модели попросту невозможно сделать на FDM-принтере за один цикл, и приходится разбивать их на детали с последующим соединением склейкой или другим способом.

Таким образом, для очень многих образцов, изготовленных по технологии FDM, потребуется более или менее сложная финишная обработка, которую сложно или невозможно механизировать, поэтому в основном она производится вручную.

Есть и менее очевидные недостатки, например, зависимость прочности от направления, в котором прикладывается усилие. Так, можно сделать образец достаточно прочным на сжатие в направлении, перпендикулярном расположению слоев, но вот на скручивание он будет гораздо менее прочным: возможен разрыв по границе слоев.

Другой момент в той или иной мере присущ любой технологии, связанной с нагревом: это термоусадка, которая приводит к изменению размеров образца после остывания. Конечно, тут много зависит от свойств используемого материала, но порой нельзя примириться даже с изменениями в несколько десятых долей процента.

Далее: технология может показаться безотходной только на первый взгляд. И речь не только о поддерживающих структурах в сложных моделях, немало пластика уходит в отходы даже у опытного оператора при подборе оптимального для конкретной модели режима печати.

Почему же при таком количестве проблем эта технология сейчас стала столь популярной?

Главная и определяющая причина — цена как на сами принтеры, так и на расходные материалы к ним. Первым важным толчком в процессе продвижения FDM-принтеров «в массы» стало истечение в 2009 году срока действия патентов, вследствие чего за пять лет цены на такие принтеры снизились более чем на порядок, а если рассмотреть крайности (самые дорогие до 2009 года и самые дешевые сегодня), то и на два порядка: цена на самые дешевые принтеры китайского производства сегодня составляет всего 300–400 долларов — правда, скорее всего покупатель в них моментально разочаруется. Более приличные принтеры начального уровня сейчас имеют цену уже ближе к $1200–1500.

Вторым немаловажным фактором стало появление проекта RepRap, или Replicating Rapid Prototyper — самовоспроизводящийся механизм быстрого прототипирования. Самовоспроизведение касается изготовления на уже сделанном принтере частей для другого подобного принтера — конечно, не всех, а лишь тех, которые можно создать в рамках данной технологии, всё прочее приходится покупать. И оно не было самоцелью проекта: главной задачей стало создание максимально дешевых моделей принтеров, доступных даже частным энтузиастам, не обремененным излишком денег, но желающим попробовать свои силы в 3D-печати. Более того, самовоспроизводящимися (в сколь-нибудь заметной части всех деталей) были и есть далеко не все прототипы, созданные в рамках RepRap.

Мы не будем заниматься подробным описанием этапов становления проекта RepRap, разбором достоинств и недостатков таких прототипов, как Darwin, Mendel, Prusa Mendel, Huxley. Тема очень обширна, чтобы ее можно было рассмотреть в рамках данного обзора, и мы приводим эти названия только как ключевые слова для поиска информации, которой в интернете очень много.

Конечно, создаваемые таким образом принтеры чаще всего далеки от совершенства даже в рамках технологии FDM, но они позволяют с минимальными финансовыми затратами создать вполне работоспособный аппарат. Нужно отметить: сегодня вовсе не обязательно искать обладателя принтера, чтобы напечатать возможные детали, и бегать по магазинам в поисках остального; предлагаются полные наборы для самостоятельной сборки принтера, так называемые DIY kits (от «Do It Yourself» — сделай это сам), которые позволяют и заметно сэкономить, и избежать лишней беготни и хлопот, да к тому же содержат подробные инструкции по сборке. Но есть простор и для тех, кто не хочет замыкаться в рамки готовых конструкций и желает внести в них что-то свое: есть масса предложений по любым отдельным комплектующим для подобных принтеров.

Еще одна положительная сторона развития проекта RepRap — появление и совершенствование различного программного обеспечения для работы с подобными 3D-принтерами, причем распространяемого свободно. В этом немаловажное отличие от аппаратов, выпускаемых именитыми производителями, которые работают только с собственным ПО.

В принципе, проект не замыкается на технологии FDM, но пока именно она является наиболее доступной, равно как наиболее доступным материалом является пластиковая нить, которая и используется в подавляющем большинстве принтеров, создаваемых на базе разработок RepRap.

Широкое распространение FDM-принтеров привело к увеличению спроса на расходные материалы к ним; предложение не могло не последовать за спросом, и произошло то же самое, что и с самими принтерами: цены рухнули. Если на старых интернет-страницах, посвященных FDM-технологиям, встречаются упоминания цен на уровне 2-3 и даже более сотен евро за килограмм пластиковой нити, то сейчас повсеместно речь идет о десятках евро, и лишь на новые материалы с необычными свойствами цена может достигать сотни долларов или евро за килограмм. Правда, если раньше продавались в основном «фирменные» материалы, то теперь зачастую предлагается нить непонятного происхождения и неопределенного качества, но это неизбежно сопутствует популярности.

Помимо цены, у FDM-принтеров есть другие достоинства, связанные с возможностями технологии. Так, очень легко оснастить принтер второй печатающей головкой, которая может подавать нить из легко удаляемого материала для создании поддержек в сложных моделях. Внеся краситель при изготовлении пластиковой нити, можно получать различные, очень яркие цвета.

Да и сам материал нити может иметь самые разные свойства, поэтому рассмотрим вкратце наиболее распространенные типы.

Пластиковая нить может быть двух стандартных диаметров: 1,75 и 3 мм. Естественно, они не взаимозаменяемы, и выбор нужного диаметра следует уточнять по спецификации принтера. Поставляется пластик на катушках и измеряется не длиной, а весом. Для FDM-принтеров некоторых производителей (например, CubeX от 3D Systems) нужно покупать не катушки, а специальные картриджи с нитью, которые в пересчете на килограмм обходятся заметно дороже, но производитель гарантирует качество материала — словом, всё точно так, как в обычных принтерах: «оригинальная» и «совместимая» расходка.

Для каждого типа материала должны быть известны рабочая температура, до которой должен нагреваться материал в печатающей головке, и температура подогрева рабочего стола (платформы) для лучшего прилипания первого слоя. Эти величины не всегда одинаковы для любого образца нити, сделанной из материала одного типа, поэтому мы указываем примерный диапазон; по идее, оптимальные температуры должны указываться на этикетке катушки или в сопроводительном документе, но это происходит далеко не всегда, и зачастую их приходится подбирать экспериментально.

Основными материалами для FDM-принтеров являются пластики ABS и PLA.

ABS (акрилонитрилбутадиенстирол, АБС) — это ударопрочная техническая термопластическая смола на основе сополимера акрилонитрила с бутадиеном и стиролом. Сырьем для его производства является нефть. Этот пластик непрозрачный, легко окрашивается в разные цвета.

Достоинства ABS:

  • долговечность,
  • ударопрочность и относительная эластичность,
  • нетоксичность,
  • влаго- и маслостойкость,
  • стойкость к щелочам и кислотам,
  • широкий диапазон эксплуатационных температур: от −40 °С до +90 °С, у модифицированных марок до 103–113 °С.

К достоинствам следует отнести невысокую стоимость, растворимость в ацетоне (что позволяет не только склеивать детали из ABS, но также сглаживать с помощью ацетона неровную поверхность). ABS более жесткий, чем PLA, и потому сохраняет форму при больших нагрузках.

Из недостатков надо упомянуть следующие:

  • несовместимость с пищевыми продуктами, особенно горячими, поскольку при определенных условиях (высокой температуре) может выделять циановодород,
  • неустойчивость к ультрафиолетовому излучению (т. е. не любит прямых солнечных лучей),
  • термоусадка заметно выше, чем у PLA,
  • более хрупкий, чем PLA.

Рабочая температура выше, чем у PLA, и находится в диапазоне 210–270 °С. При работе с нитью ABS ощущается слабый запах. Кроме того, для лучшего прилипания первого слоя модели к рабочему столу требуется подогрев стола примерно до 110 градусов.

Про цену: встречаются упоминания $30–40 за килограммовую катушку. Реально цены в России начинаются от 1500 (мелкий опт) до 2000 и более (розница) рублей за килограмм, если речь идет о китайских производителях. ABS-нить от известных фирм, изготовленная в США, может быть в полтора-два раза дороже.

PLA (полилактид, ПЛА) — биоразлагаемый, биосовместимый полиэфир, мономером которого является молочная кислота. Сырьем для производства служат возобновляемые ресурсы — например, кукуруза или сахарный тростник, поэтому материал является нетоксичным и может применяться для производства экологически чистой упаковки и одноразовой посуды, а также в медицине и в средствах личной гигиены.

Сразу отметим: биоразлагаемость вовсе не синоним крайней недолговечности, изделия из PLA вполне жизнеспособны.

Достоинства:

  • низкий коэффициент трения, делающий его пригодным для изготовления подшипников скольжения,
  • малая термоусадка, особенно в сравнении с ABS,
  • менее хрупкий и более вязкий, чем ABS: при одинаковых нагрузках скорее согнется, чем сломается.

Рабочая температура ниже, чем у ABS: около 180–190 °С. Подогрев рабочего стола не является обязательным, но желательно всё же нагревать стол до 50–60 °С.

Недостатки: один из них мы уже упомянули — меньшую, чем у ABS, долговечность. Кроме того, PLA более гигроскопичен, и даже при хранении требует соблюдения режима влажности, иначе может начаться расслоение материала и появление в нем пузырьков, что приведет к дефектам при изготовлении модели. К тому же PLA зачастую немного дороже ABS, хотя цена сильно зависит от производителя и продавца.

Ацетон практически не оказывает воздействия на PLA, его приходится склеивать и обрабатывать дихлорэтаном, хлороформом или другими хлорированными углеводородами, что требует повышенных мер безопасности при работе (но, конечно, и ацетон в этом плане не подарок).

Другие материалы для FDM-печати распространены гораздо меньше.

HIPS (High-impact Polystyrene, ударопрочный полистирол) — материал непрозрачный, жесткий, твердый, стойкий к ударным воздействиям, к морозу и перепадам температур. Растворяется в лимонене — естественном растворителе, извлекаемом из цитрусовых, и потому может использоваться для создания поддерживающих структур, которые не придется удалять механически.

Рабочая температура около 230 °С, цена на 30–50% выше, чем у ABS.

Нейлон легкий, гибкий, устойчивый к химическому воздействию. Детали из него обладают очень низким поверхностным трением.

Рабочая температура выше, чем у PLA: около 240–250 °С. Правда, при этом не выделяется паров или запахов. Стоимость нейлоновой нити в два раза больше, чем PLA или ABS.

PC (Polycarbonate, поликарбонат) — довольно твёрдый полимер, сохраняющий свои свойства в диапазоне температур от −40 °С до 120 °С. Обладает высоким светопропусканием и часто используется в качестве заменителя стекла, а поскольку еще имеет меньшую удельную массу и более высокий коэффициент преломления, то прекрасно подходит для производства линз. Полная биологическая инертность позволяет делать из него даже контактные линзы. Кроме того, из него изготавливают компакт-диски.

Температура печати 260–300 °С. В виде нити для FDM-печати пока выпускается мало, поэтому цена втрое выше, чем у ABS.

Похожими оптическими свойствами обладает PETT (Polyethylene terephthalate, полиэтилентерефталат). Модели из него получаются очень прочными, поскольку слои расплавленного материала отлично склеиваются. Рабочая температура 210–225 °С, стол желательно подогреть до 50–80 °С. Цена около 4500–5000 рублей за килограмм.

Под аббревиатурой PVA (ПВА) могут скрываться два типа материала: поливинилацетат (Polyvinyl Acetate, PVAc) и поливиниловый спирт (Polyvinyl Alcohol, PVAl). По химической формуле они довольно похожи, только в поливиниловом спирте отсутствуют ацетатные группы, и свойства их тоже совпадают — во многом, но не во всем. К сожалению, продавцы зачастую указывают просто «PVA (ПВА)», не делая различий, поэтому мы можем привести только обобщенную примерную цену: 4500–5000 рублей за килограмм нити.

Поливиниловый спирт PVAl требует рабочей температуры около 180–200 °С, дальнейшее ее повышение нежелательно — может начаться пиролиз (термическое разложение). Кроме того, материал очень гигроскопичен, он активно поглощает влагу из воздуха, что создает проблемы и при хранении, и при печати, особенно если диаметр нити 1,75 мм. С другой стороны, это же свойство является очень полезным: поддержки, сделанные из PVAl, растворяются в холодной воде.

Поливинилацетат PVAc всем хорошо известен как составная часть клея ПВА, представляющего собой водную эмульсию этого вещества. Для него требуется немного более низкая рабочая температура: 160–170 градусов. Он также хорошо растворяется в воде.

Все время появляются новые материалы с оригинальными свойствами. Правда, цена на них в первое время может быть очень высокой.

Например, эластомер NinjaFlex позволяет создавать эластичные изделия. Цена около 7500–8000 рублей за килограмм, рабочая температура 210–225 °С, температура стола может быть комнатной или слегка повышенной, до 35–40 °С.

Недавно появившийся материал Laywoo-D3 интересен прежде всего тем, что изделия из него по фактуре напоминают дерево и даже пахнут, как деревянные. Дело в том, что его как раз и делают на основе мелких частиц дерева и связующего полимера. Рабочие температуры могут быть в диапазоне 175–250 °С, подогрев стола не требуется. Причем цвет после застывания будет зависеть от выбранной температуры: чем она выше, тем темнее. Меняя температуру во время печати, можно даже получить подобие годовых колец, как на натуральном дереве. Конечно, и цена на этот материал немалая — около 10 тысяч рублей за килограмм.

Другой экзотический материал, Laybrick, содержит минеральные наполнители и позволяет имитировать изделия из песчаника. Рабочая температура находится в пределах 165–210 °С; на этот раз с повышением температуры можно получить более грубую поверхность для усиления эффекта имитации. Он также не требует подогрева стола, но по окончании печати следует выждать несколько часов, чтобы модель окончательно затвердела, и лишь потом снимать ее. Цена те же 10 тысяч рублей за килограмм.

Конечно, все указанные выше цены являются лишь ориентиром: они могут меняться как по прошествии времени, так и от продавца к продавцу, особенно если покупать не в России, а заказывать за рубежом.

Поскольку наш обзор рассчитан в основном на тех, кто недавно заинтересовался 3D-печатью и пока не имеет собственного опыта работы в этой сфере, отметим: лучше всего начинать с «курса молодого бойца», и даже порекомендуем курсы по обучению 3D-печати (по ссылке можно скачать программу курсов и найти контактные координаты). Помимо рассказа о теоретических основах, каждому «курсанту» предоставляется возможность поработать на весьма неплохом FDM-принтере под руководством знающих специалистов. Конечно, курсы коммерческие, т. е. платные, но потраченные деньги быстро окупятся, поскольку вы получите знания о том, как избежать самых частых ошибок, и практический опыт, пусть и небольшой.

На этом мы завершаем обзор, чтобы вскоре перейти к другим аспектам 3D-печати и конкретным моделям принтеров.

www.ixbt.com

Мой опыт в 3д печати на заказ.

Mef78 Загрузка

23.06.2017

19488

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

33

Наверное как и многие на портале, покупая 3д принтер думал эх размахнусь, буду печатать то да се, размещу принты на авито, денежка маленько капать будет. Хотя бы на расходные материалы.По факту оказалось все гораздо сложнее.

Перед новым годом пробовал выставить на авито статуэтки курЯт - безуспешно.

Цифры года подкрашены акриловой краской. В итоге курята разошлись на новогодние подарки коллегам супруги :).

Потом были свистки и спиннеры :) По нулям.

Один спиннер себе оставил, второй сыну задарил. Один свисток так же, задарил сыну :).Общаясь с товарищем у которого по договору гпх подрабатываю программистом, узнал что для своего оборудования прототипы корпусов они печатают на стороне. Есть нарекания как по качеству печати, так и по срокам. Идея родилась сама собой.Предложил попробовать у меня распечатать модельку. Им как раз надо было распечатать прототип нового корпуса.Мне и самому было интересно попробовать (до этого не печатал такие крупный и долго печатающиеся модели), а в случае успеха со мной бы за печать рассчитались и я бы забрал на себя печать следующих прототипов.Печатать решил из PLA, это проще, хоть и чуть дороже. Печатал пластиком prostoplast 'фиалка'. Корпуса всего лишь прототипы для обкатки размеров и форм и по большому счету материал значения не имеет. Плюсом пла не так дает усадку, как например абс.

Первой моделью был вот такой корпус, состоящий из 2х частей.

Нижняя (большая) часть была достаточно простой и распечаталась легко, но долго. Верхнюю часть при всей кажущейся простоте крутил и так, и сяк. В итоге распечатал плашмя, на поддержках.На печать всего корпуса суммарно ушли почти сутки.

Качество и сроки заказчика устроили.

Прибор в сборе. Разное освещение дало разный цвет. Странные полосы на боковой стенке. Воблинг ? Крышечку синего цвета позже напечатал, с нее не ободрали кайму. Потом был еще один корпус, для нового прибора. Большую часть печатал на поддержках снизу. Заказчик сказал печатать именно так. По опыту печати прошлого корпуса.

Выковыривать поддержки было 'весело'.

Расчетный вес 214, факт 232. Верхнюю часть печатал дважды: после первого прототипа доработали модель т.к. нашлись несоответствия модели и платы. А у меня фиолетовый пла закончился. Печатал уже синим пла prostoplast 'синее море'.

Ну и собственно сам агрегат (прототип платы и прототип корпуса) итого, в сборе.

На боковых поверхностях первого корпуса были полосы, тут распечаталось почти идеально. Как оказалось, напечатать и отработать прототип на 3д принтере гораздо дешевле, чем сразу распечатать мастер модель с которой будут делать форму для литья корпусов. А потом мастер модель перепечатывать, в случае обнаружения несоответствий. Мастер модель печатают не на fdm принтере.

Заказы на 3д печать иногда выстреливают там, где их даже не ждешь. Пусть заказы не большие и достаточно редкие, но это гораздо лучше чем ничего.

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

33

Комментарии к статье HardLight Загрузка

16.09.2019

1415

7

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

Добрый день! Будучи клиенто-ориентированной компанией, мы не всегда печемся о прибыли. Добрый совет, отношение клиентов и вежливое слово иногда так же...

Knife56 Загрузка

22.09.2019

8

1

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться Здравствуйте Уважаемые! Решил поделиться крохотными достижениями и послушать мнение спецов.

Прошло чуть больше 2-х м...

26.01.2016

96529

246

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться Продолжаю серию статей начатую частью, посвященной полимерам.

Данная часть будет посвящена теории и практике 3D печати, и я постараюсь раскры...

3dtoday.ru

Что такое 3D-принтер

3D–принтер — это технология, которая позволяет создавать реальные объекты из цифровой модели. Всё началось в 80-х годах под названием «быстрое прототипирование», что и было целью технологии: создать прототип быстрее и дешевле. С тех пор многое изменилось, и сегодня 3D-принтеры позволяют создавать всё, что вы можете себе представить.

Оглавление:

  • Что такое 3D–печать?
  • Как работает 3D-принтер?
  • Что можно напечатать?

3D-принтер позволяет создавать объекты, которые практически идентичны их виртуальным моделям. Именно поэтому сфера применения данных технологий так широка.

Что такое 3D-печать?

3D-печать — это процесс аддитивного производства, потому что, в отличие от традиционного субтрактивного производства, трехмерная печать не удаляет материал, а добавляет его, слой за слоем — то есть выстраивает или выращивает.

  1. На первом этапе печати данные из чертежа или 3D–модели считываются принтером.
  2. Далее идет последовательное наложение слоев.
  3. Эти слои, состоящие из листового материала, жидкости или порошка соединяются друг с другом, превращаясь в окончательную форму.

При производстве ограниченного количества деталей 3D-печать будет быстрее и обойдет дешевле. Мир 3D-печати не стоит на месте и поэтому на рынке появляется все больше различных технологий, конкурирующих между собой. Разница их заключается в самом процессе печати. Одни технологии создают слои путем размягчения или плавления материала, затем они обеспечивают послойное нанесение этого самого материала. Другие технологии предусматривают использование жидких материалов, обретающих в процессе твердую форму под воздействие разнообразных факторов.

Для того, чтобы что-то напечатать, сначала вам понадобится 3D-модель объекта, который вы можете создать в программе 3D-моделирования (CAD — Computer Aided Design), или использовать 3D-сканер для сканирования объекта, который вы хотите печатать. Есть также более простые варианты, такие как поиск моделей в Интернете, которые были созданы и доступны другим людям.

После того, как ваш проект готов, все, что вам нужно сделать, это импортировать его в Слайсер, программа которая адаптирует модель в коды и инструкции для 3D–принтера, большинство программ с открытым исходным кодом и распространяются бесплатно. Слайсер преобразует ваш проект в файл gcode, готовый к печати как физический объект. Просто сохраните файл на прилагаемой SD-карте и вставьте его в свой 3D–принтер и нажмите печать.

На весь процесс может уйти нескольких часов, а иногда и несколько дней. Все зависит от размера, материала и сложности модели. Некоторые 3D-принтеры используют два различных материала. Один из них является частью самой модели, другой выступает в роли подпорки, которая поддерживает части модели, нависающие в воздухе. Второй материал в дальнейшем удаляется.

Как работает 3D-принтер?

Хотя существует несколько технологий 3D-печати, большинство из них создают объект, наращивая множество последовательных тонких слоев материала. Обычно настольные 3D-принтеры используют пластиковые нити (1), которые подаются в принтер податчиком (2). Нить плавится в печатающей головке (3), которая выдавливает материал на платформу (4), создавая объект слой за слоем. Как только принтер начнет печатать, все, что вам нужно делать, это подождать — это просто.

Конечно, когда вы станете продвинутым пользователем, игра с настройками и настройкой вашего принтера может привести к еще лучшему результату.

Чтобы узнать больше о том, как работает 3D-печать, читайте: Техподдержка и Новости 3D-печати

Что можно напечатать на 3D-принтере?

Возможности 3D-принтеров безграничны, и теперь они становятся обычным инструментом в таких областях, как инженерия, промышленный дизайн, производство и архитектура. Вот некоторые типичные примеры использования:

Создавайте персонализированные продукты, которые полностью соответствуют вашим потребностям с точки зрения размера и формы. Сделайте что-то, что было бы невозможно с помощью любых других технологий.

Трехмерная печать позволяет быстро создать модель или прототип, помогая инженерам, дизайнерам и компаниям получить обратную связь по своим проектам за короткое время.

Модели, которые трудно даже представить, могут быть легко созданы на 3D-принтере. Эти модели хороши для обучения других по сложной геометрии интересным и полезным способом.

Стоимость деталей и прототипов конечного использования 3D-печати низкая благодаря используемым материалам и технологии. Сокращается время производства и расход материала, так как вы можете многократно печатать модели, используя только необходимый материал.

Как выбрать и купить 3D-принтер? →

3dpt.ru

Что такое 3D печать? | Как применить 3D принтер и прочие технологии 3D печати

3D печать также известна как компьютерное моделирование или альтернативное конструирование. Это процесс воссоздания реального объекта по образцу 3D модели. Цифровая 3D модель сохраняется в формате файла STL и передается на печать 3D принтеру. Затем 3D принтер, накладывая слой за слоем, формирует реальный объект.

Немногие технологии способны выполнить 3D печать. Основная разница заключается в том, каким образом слои накладываются один на другой.

СЛС (селективное лазерное сплетение), НРМ (моделирование путем наложения слоев расплавленных материалов) и СЛА (стереолитиография) – наиболее распространенные технологии, используемые при 3D печати. Технологии селективного лазерного сплетения (СЛС) и моделирование путем наложения слоев расплавленных материалов (НРМ) используют расплавленные материалы для создания слоев.

Это видео демонстрирует, каким образом селективный лазер расплавляет тонкодисперсные порошки и шаг за шагом превращает их в объемную фигуру.

Это видео показывает процесс моделирования путем наложения слоев расплавленных материалов (НРМ).

Видео ниже раскрывает секрет процесса стереолитиографии (СЛА).

Чаще всего решающими факторами выступают: скорость и цена создания прототипа, цена 3D принтера, возможности выбора материалов и их доступность.

5 октября 2011 года – Roland DG Corporation презентовала первую модель под названием iModela iM-01.

Сентябрь 2011 года – Венский технический университет разработал уменьшенное, более легкое и дешевое устройство для печати. Этот самый маленький 3D принтер весом около 1,5 кг стоит примерно1200 евро.

Август 2011 года – инженерами Университета Саутгемптона был создан первый в мире самолет при помощи 3D печати.

Июль 2011 года – под руководством Университета Эксетера, Университета Брунель и разработчика приложений компании Delcam, британские исследователи представили первую в мире 3D шоколадный принтер.

6 Июня 2011 года – Shapeways и Continuum Fashion заявили о создании первого в мире печатного 3D бикини.

Январь 2011 – голландский производитель 3D принтеров, компания Ultimaker сумела увеличить скорость печати с 300 мм /сек до 350 мм /сек.

Январь 2011 – исследователи из Корнельского университета начали строить 3D принтер для продуктов питания.

8 Декабря 2010 года – компания Organovo, Inc., специализирующаяся на применении биопечати в регенеративной медицине, объявила про публикацию данных о создании первых кровеносных сосудов, созданных путем биопечати.

Ноябрь 2010 года – представлен первый прототип автомобиля Urbee. Это первый в мире автомобиль, корпус которого полностью был создан при помощи огромного 3D принтера. Все внешние компоненты – включая прототипы окон – были изготовлены компаниями Dimension 3D Printers и Fortus 3D Production Systems в Страсбурге, которые предоставили услуги цифрового производства – по запросу компании RedEye.

2008 год – компания Objet Geometries Ltd. заявили о намерении создать первую в истории систему быстрого прототипирования Connex500™, которая впервые позволит производить 3D объекты, используя одновременно сразу несколько видов материалов.

2008 год – вышла первая версия принтера Reprap, который мог производить около 50% собственных комплектующих.

2006 год – стартовал открытый проект – Reprap – целью которого стало создание самовоспроизводящихся 3D принтеров. Пользователь имеет право распространять и/или заменять их в соответствии с лицензией GNU (General Public Licence).

2005 год – компания Z Corp. выпустила принтер Spectrum Z510, который стал на рынке первым принтером с широкими возможностями, позволившим печатать в цвете.

1997 год – компания EOS продала проект стереолитиографии компании 3-D Systems, однако все же осталась крупнейшим производителем в Европе.

1996 год – компания 3D Systems выпустила принтер «Actua 2100». Термин «3D принтер» впервые был использован для обозначения машины быстрого прототипирования.

1996 год – компания Z Corporation представила модель «Z402».

1996 год – компания Stratasys выпустила принтер «Genisys».

1995 год – компания Z Corporation получила эксклюзивное право от MIT на использование технологий и начала разработку 3D принтеров, основанных на технологии 3DP.

1993 год – Массачусетский технологический институт (MТИ) запатентировал «Технологию трехмерной печати». Она подобна струйной технологии 2D принтеров.

1993 год – основана компания Solidscape для производства машин на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, при этом относительно недорого.

1992 год – компания DTM продала первую систему селективного лазерного спаивания (СЛС).

1992 год – компания Stratasys продала первое устройство «3D Modeler», основанное на FDM.

1991 год – Helisys продала первую технологию для производства многослойного объекта (ПMO).

1989 год – компания Scott Crumpосновала предприятие Stratasys.

1988 год – компания Scott Crump изобрела моделирование плавлеными осаждениями (МПО).

1988 год – компания 3D Systems разработала модель принтера SLA-250, первого принтера для использования в домашних условиях.

1986 год – компания Charles Hull основала предприятие 3D Systems и разработала первый промышленный 3D принтер под названием Stereolithography Apparatus.

1986 год – компания Charles Hull дала название и запатентировала технику стереолитиографии (Stereolithography).

1984 год – компания Charles Hull разработала технологию 3D печати для воссоздания реальных объектов, используя цифровые данные.

Одной из важных сфер для применения 3D печати является медицина. Используя 3D печать, хирурги могут конструировать макеты частей тела пациента, которые нужно прооперировать. 3D печать позволяет всего в течение нескольких часов изготовить запчасти практически с нуля. Она позволяет дизайнерам и разработчикам придать нужную форму плоской поверхности.

На сегодняшний день практически всё, как запчасти для авиакосмической промышленности, так и детские игрушки, начинают производить при помощи 3D принтеров. 3D печать применяется для создания украшений и произведений искусства, архитектуры, в индустрии моды, архитектуре и дизайне интерьера.

Вот несколько необычных способов применения 3D печати:

1. Первый в мире принтер для печати шоколадом

2. Первый в мире купальник, напечатанный на 3D принтере:

3D принтер отличается от обычного принтера. 3D принтер производит печать объектов в трехмерном пространстве. 3D модель строится путем накладывания слоев. Поэтому весь процесс получил название быстрого макетирования, или 3D печати.

Параметры таких принтеров находятся в приделах от 28 x 328 x 606 DPI (xyz) до 656 x 656 x 800 DPI (xyz) в ультра-HD расширении. Точность составляет 0.025 мм - 0.05 мм на 2,5 см. Максимальный размер модели, которую он может произвести, до 737 мм x 1257 мм x 1504 мм.

Огромным недостатком использования 3D принтера в домашних условиях является его высокая стоимость. Еще один недостаток – печать модели может проходить на протяжении нескольких часов или даже дней (зависит от количества деталей, сложности конструкции, размера объекта). Помимо вышеупомянутого, профессиональное программное обеспечение для 3D моделирования тоже стоит недешево.

Как альтернатива, существуют упрощенные версии 3D принтеров для «любителей», их стоимость гораздо ниже. Материалы, которые они используют при печати, также менее дорогие. Однако, такие 3D принтеры менее точные, если сравнивать с коммерческими 3D принтерами.

3D принтеры являются упрощенным вариантом машин для прототипирования. Они менее затратные и не такие функциональные.

Машины для прототипирования (МП) – это традиционный метод, годами применяемый в автомобилестроении и авиационной промышленности.

В общей сложности, 3D принтеры компактнее и меньше, нежели МП. Они идеально подходят для применения в офисах. Они потребляют меньше энергии и занимают меньше места. Их задача – репродукция небольших объемных предметов, сделанных из нейлона или других видов пластика. Это также означает, что 3D принтеры производят небольшие запчасти. Машины для прототипирования, ко всему прочему, имеют встроенные камеры размером примерно 25,5 см, а у 3D принтеров их размер достигает 20,3 см. Однако, 3D принтеры имеют такой же ряд функций, что и МП, такие как: проверка и утверждение дизайна, создание прототипа, восприятие информации от других источников и прочее.

В результате 3D принтер прост в обращении и недорогой в обслуживании. Вы можете приобрести один из специальных DIY-наборов и собрать его самостоятельно. Все это стоит дешевле, нежели профессиональное прототипирование, 3D принтер можно приобрести за $1000 или менее. В то время как профессиональное быстрое прототипирование обойдется как минимум в $50,000.

3D принтеры не такие точные, как машины для быстрого прототипирования. В связи с их упрощенностью, выбор материалов для печати также ограничен.

Знатоки в области 3D печати заявляют: «Если вы можете это нарисовать, значит, вам под силу это создать». Видео ниже показывает, какие различные предметы можно сделать при помощи 3D принтера. Все же, сложные объекты можно создать только при помощи профессионального 3D принтера, а их может себе позволить далеко не каждый.

Промышленные 3D принтеры производят такие предприятия, как:
3D принтеры для частного использования:

Вот таблица сравнения цен на DIY 3D принтеры (комплекты для сборнки) и на полностью укомплектованные промышленные 3D принтеры (менее $25,000)

Reprap

Для 3D печати используют разнообразные материалы, такие как: ABS и PLA пластмассы, полиамид (нейлон), стекловолокно полиамида, стереолитографические материалы (эпоксидные смолы), серебро, титан, сталь, воск, фотополимеры и поликарбонаты.

Если вы начинающий пользователь, то вы можете попробовать установить одну из программ для 3D моделирования, которые можно загрузить бесплатно.

  • Google SketchUp – это программа довольно интересная и бесплатная, известна простотой использования. Чтобы построить модели в SketchUp, вы рисуете контуры и лица, используя несколько простых приемов, которые можно освоить в кратчайшие сроки. При помощи инструмента Push/Pull (вдавить/выдавить) любую плоскую поверхность модно преобразить в трехмерную фигуру. Программа может работать совместно с программой Google Earth. Из Google Earth можно загрузить фотографию ландшафта (рельефа) территории, или построить в SketchUp модели, которые можно будет увидеть в Google Earth.
  • 3Dtin – простейшая программа для 3D моделирования. Можно рисовать непосредственно из браузера.
  • Blender – это бесплатный, доступный контент наборов для 3D моделирования, которые подходят для всех основных операционных систем, имеющих лицензию GNU (General Public License). Blender был разработан для внутреннего пользования голландской анимационной студии NeoGeo и Not a Number Technologies (NaN). Эта мощная программа имеет качества высококлассного программного обеспечения для 3D моделирования.
  • OpenSCAD – программа для создания твердых 3D CAD объектов. Это бесплатное программное обеспечение подходит для Linux/UNIX, MS Windows и Mac OS X. Программа сосредоточена не на дизайнерских аспектах 3D моделирования, а на вопросах CAD.
  • Tinkercad – новый способ создавать модели более быстро для печати 3D принтером. Всего три основных инструмента создают широкий спектр возможностей для создания множества полезных вещей. Как только проект завершен, загрузите STL-файл и начните 3D печать.
Коммерческое программное обеспечение, такое как CAD-программа AutoCAD и Pro Engineer, пакет программ Rhino, Maya, и SolidWorks, идеально подходит для 3D моделирования.

Вы можете приобрести навыки 3D моделирования, изучая принципы работы инструментов таких программ как Rhino, Blender или SketchUp.

Ознакомление с инструментами 3D моделирования (программы Rhino, Blender или SketchUp) займет около трех недель.

Чтобы достичь профессионального уровня, понадобиться обучение и практика на протяжении примерно одного года.

Вот список Интернет ресурсов, имеющих подобные примеры:

  • 3D Marvels
  • 3D Via
  • GrabCAD
  • Google 3D Warehouse
  • Ponoko Product Plans
  • Shapeways 3D Parts Database
  • Thingiverse
  • Turbosquid: Free objects

Компании Shapeways, i.Materialise, Sculpteo и Ponoko активно предлагают услуги 3D печати в Интернете.

www.3dindustry.ru


Смотрите также